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Chapter 1

Introduction

Do not imagine that mathematics is hard and crabbed,
and repulsive to common sense.
It is merely the etherealization of common sense.

William Thomson (1824–1907)

1.1 Motivation

The flow of fluids is a ubiquitous phenomenon in our environment. Not only is life as
we know it dependent on fluids in countless ways, also human inventions exploit the
physical and chemical properties of gases and liquids in innumerably many ways. The
urge to understand the relevant processes has born the field of fluid dynamics. While many
single fluid flows are well comprehended nowadays, the details of flow with more than
one fluid involved are naturally more complex and still defy a thorough understanding and
control. A particular class of such flows are those with free interfaces, i.e., two or more
fluids that do not mix, but maintain a relatively sharp interface between each other. An
everyday life example are flows with bubbles. The interest in such flows derives from the
fact that the characteristics of the flow of the composite can be strikingly different from a
single component case. The understanding of how such processes depend on the multifluid
aspects is crucial to the exploitation of such effects.

Just as in other branches of physics, research in fluid dynamics can be characterized
by a tripolar structure of theory, experiment, and—since the availability of computers—
numerical simulation as modi operandi. Already for single fluid flow, theoretical ap-
proaches typically allow only statements about idealized configurations, and it will be even
more difficult to apply them to realistic multiphase flow situations. Experiments, on the
other hand, are often hard and expensive to realize, with complications in acquiring mea-
surements of the desired quantities and the reproducibility of results. Therefore, numerical
simulation plays an important role in the understanding of multiphase flow.1

1The term multiphase flow, which literally refers to a special class of multicomponent flows, is used interchange-
ably with multicomponent or multifluid flow here. The challenges considered in this chapter apply to all flows
of several immiscible fluids.
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Simulation of multiphase flow is carried out in different ways, depending on the scale
of the examined effects. The available computer capacity limits the domain size and
the amount of detail that can be captured. For industrial-size configurations, disperse
gas-liquid (bubbly) flow is usually modeled in a purely Eulerian manner by deriving
averaged equations for the complete fluid mass, see, for example, (Drew and Passman,
1998). The averaging operation for the nonlinear terms in the continuum equations leads
to undetermined correlation terms, which have to be modeled by closure relations, i.e.,
parameterizations in terms of known characteristics of the flow. The parameterizations have
to be calibrated with the help of theory, measurements, or simulations with a resolution that
allows to explicitly capture the relevant processes. Given the same computing limitations,
simulations of the latter type use a much higher resolution than those based on models with
parameterizations and consequently they will allow only a limited number of bubbles or
other structures to be included. On the other hand, at this scale the number of properties and
processes that is included explicitly in the model can be much larger. Features that could be
taken into account (without parameterization) in micro-scale models but not in macro-scale
ones are,2 for example, the physics and chemistry of the individual fluids, changes in bubble
shape, bubble interactions with or without changes in topology (splitting and merging),
and (chemical) processes at the interface. Apart from the computer bandwidth lagging
behind the demand, also the available mathematical descriptions limit the simulations: the
model—and ultimately the numerical method used to evaluate it—must be able to deal
with the effects one wishes to consider.

In the described problem domain, the current work focuses on the development of a
single-fluid numerical method for the Navier–Stokes equations that particularly addresses
some of the abovementioned issues of the multifluid context. A few items that will receive
attention are singled out next.

First of all, regarding the physics of individual fluids, many studies assume incom-
pressibility for both phases in gas-liquid flow, even under conditions where one would
expect at least the gas phase to be compressible. The simplification is a consequence of
the dichotomy of computational fluid dynamics, with methods for compressible flow on
the one hand and those for incompressible flow on the other. Hauke and Hughes (1998)
describe the separation of the two fields by almost every part of the numerical algorithms:
Starting from the formulation of the flow equations, over the discretization method to the
solvers for the finite-dimensional equation system the components of compressible solvers
typically differ from those of incompressible ones.

As a consequence of the disparity between numerical methods for compressible and
incompressible flow, for the application to multiphase flows there are several options:
First, one might couple methods specialized for the different phases at the fluid interfaces.

2The list of processes is based on the available computing power at the time of writing. In the future, larger-scale
models may be able to include such effects without parameterizations.
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Alternatively, a different and more general kind of method than typically applied may be
sought, namely one that suits both cases. A third way is to drop the continuum model (here
the Navier–Stokes equations) and switch to a more fundamental physical viewpoint, as is
done in Lattice-Boltzmann methods, see, e.g., (Chen and Doolen, 1998). The last option is
discarded as a matter of choice, the goal of this thesis is to develop a numerical method
based on the fluid description with the Navier–Stokes equations. The first option, the
coupling of numerical methods for different fluids at interfaces, is expected to be difficult,
both theoretically (e.g., regarding the consistency at the interface) and concerning its
implementation. Hence, the second way is chosen, i.e., a formulation suitable for different
types of fluid is sought. The first central question therefore is:

Central question 1:
How to obtain a simulation tool that is applicable for a wide range of physical conditions
and for different fluids, especially for both compressible and incompressible flow?

Given a mathematical model formulation that can cope with different physical conditions,
the next challenge in the description of fluid flow is its multi-scale nature. Already in
single-phase flow, and even more so in multiphase configurations, a wide range of scales
is involved. Theoretically one ought to include features of the scale of the outer domain
boundary dimension, over the possible bubble and interface sizes down to the dissipative
scale of the (turbulent) flow. Distinct flow features like vortices may emerge, evolve,
and decay in time. The numerical method used to solve the mathematical model of the
flow has to be able to capture these phenomena and to cope with their movement and
transience. In the context of physical space discretizations, this task calls for dynamic
grid adaptation. When considering multiphase flow, the interfaces between portions of
the different fluids constitute an additional complication. Several methodologies exist to
capture these interfaces. To obtain an accurate description of the interface movement at
reasonable computational cost, the geometric mesh that is used for the computations has
to be locally refined in the proximity of the interface. For the described problems, the
numerical method has to allow adapting the resolution locally and temporarily. Therefore,
a second point of consideration is formulated as follows:

Central question 2:
Given a mathematical model for different fluids, which numerical method possesses the
geometric flexibility to lend itself well to the simulation of multi-scale effects and interfacial
features?

Apart from the previous two questions, which are mainly inspired by the processes whose
simulation is the goal, a third issue is added. The topic of this question is related to the
translation of the numerical method into a computer program, which is a requirement for
using the algorithm for simulations. The implementation step typically takes up significant
resources. Developing, testing, and documenting code is a time-consuming undertaking,
and ever more so as the complexity of algorithms and computer architectures is increasing.
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For these reasons, a part of this work addresses a third question, which is posed very
generally as:

Central question 3:
How to facilitate the implementation step of the developed numerical methods?

The findings regarding this question benefit both the implementation of the mathematical
model developed for the flow problems described earlier as well as a much wider class of
numerical methods outside the scope of this thesis.

The work presented in this dissertation is evaluated by its meaningfulness regarding the
three central questions, which will resurface repeatedly. Ultimately, an answer emerges
for each question. In the remainder of this introductory chapter, the individual topics are
explained in detail and related to previous research. Each central issue receives some more
attention, and the problem as well as the approach taken for its solution is described.

1.2 A continuum description for the numerical simulation of
compressible and incompressible fluids

The physical model adopted here is given by the Navier–Stokes equations. This set of
time-dependent nonlinear second order partial differential equations is sufficiently general
for the purposes pursued: The equations constitute the mathematical formulation of the
physical conservation statements for mass, momentum, and energy, which apply to all
fluids. Further, the system includes the restriction to Newtonian fluids and transport,
viscous, and Fourier heat conduction phenomena only. The Navier–Stokes equations are
not closed, though: they contain more variables than equations. For the closure of the
system, equations of state are used. These relations describe the thermodynamical state
of a fluid. Different media have different equations of state, from which again different
problems may arise for a numerical method. Many numerical methods for fluid dynamics
are tailored to overcome one particular problem, with the result that they are suitable
only for a single, idealized type of fluid. Most prominently, algorithms for compressible
flow are frequently tailored to ideal gases, and another class of schemes is designed for
incompressible media. Both underlying fluid models are important as they capture well the
essential behavior of many fluid flows. At the same time the restriction to one or the other
case means that the numerical method cannot be applied for other media (e.g., real gases)
or for situations in which several fluids with different properties populate the domain in the
form of a fluid composite (e.g., bubbly flow). Furthermore, many flow schemes originally
designed for compressible flows suffer from convergence and accuracy problems in the
low Mach number (M) limit (Guillard and Viozat, 1999; Guillard and Murrone, 2004),
which hampers their application to cases in which high and low Mach numbers coexist.
The goal here is to develop a numerical method that can be applied to different media (i.e.,
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different equations of state) and various physical conditions, including high as well as low
Mach number flows.

Returning to the low Mach number problem, several solutions have been devised. One
approach modifies the equations by using a series expansion in the Mach number; like
any finite series, however, the resulting description is limited to a neighborhood of the
expansion point M = 0, so that applicability under some circumstances is achieved at
the cost of other conditions, namely the higher subsonic and supersonic Mach number
range. Another approach starts from the compressible Navier–Stokes equations and aims at
making a numerical method constructed for these equations suitable for the incompressible
limit. This can be accomplished, e.g., by preconditioning or by the introduction of artificial
compressibility. Preconditioning, see (Turkel et al., 1997; Guillard and Viozat, 1999;
Turkel, 1999; Guillard and Murrone, 2004) and references therein, aims at reducing the
disparity between the convective and sound wave speeds and the different scaling of the
pressure and velocity field as a function of the Mach number. However, when taking
this technique to high Mach numbers, problems with a singular preconditioning matrix
occur at stagnation points and sonic lines. Furthermore, preconditioning matrices are
cumbersome to derive, depend on the numerical method used, and lead to schemes that may
be thermodynamically inconsistent (Hauke and Hughes, 1998). Artificial compressibility,
on the other hand, introduces a parameter into the continuity equation that mimics physical
compressibility by coupling pressure with density. Unfortunately, the resulting numerical
methods have a wrong time dependence, unless the artificial compressibility is introduced
in the context of a pseudo-time stepping method (Soh and Goodrich, 1988). Finally, a third
type of schemes for low Mach number problems starts from a solver for the incompressible
Navier–Stokes equations and adapts it to the compressible case while making sure that
the well-defined limit is preserved, see, e.g., Bijl and Wesseling (1998) (and references
therein), who rewrite the Navier–Stokes equations in terms of the independent variables
pressure, momentum, and enthalpy, and apply a pressure correction method.

In the present work, an ansatz is followed that combines some of the characteristics of the
mentioned approaches but takes a different starting point. The compressible Navier–Stokes
equations are used, noticing the approach to conservation laws introduced by Godunov
(1962): By performing a change of variables, the system matrix of a (quasi-) linear system
of partial differential equations is symmetrized if the special set of entropy variables
is used. The symmetrized form of the governing equations has several mathematically
and physically interesting properties, cf. (Hauke and Hughes, 1998), in the case of fluid
mechanics especially that it yields a formulation suitable for a wide range of physical
conditions. Aside from the broad applicability of the numerical method, another advantage
is the automatic satisfaction of the second law of thermodynamics (Hughes et al., 1986).
These topics are addressed in Chapter 2. For background on the symmetrization of
hyperbolic systems and the derivation of the entropy variables the work of Barth (1999) is
recommended and provides further references.
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1.3 Geometrically flexible discretization with finite element methods

One of the topics raised in Section 1.1 is the presence of widely different scales in
(multiphase) flows. On the one hand this concerns the flow features (vortices, boundary
layers, etc.) in single fluid problems, and on the other hand the fluid-fluid boundaries in
the multifluid context.

Numerical methods solve the mathematical equations on a discrete representation of the
flow domain, a mesh. In combination with the previously mentioned challenges, the mesh
has to offer more degrees of freedom and higher resolution in the area of the fine scale
features of the flow than in the parts of the domain where the flow is largely homogeneous.
Apart from the functionality to allow such adaptations, tracking an embedded interface has
to be feasible for multifluid cases. These requirements cannot be realized with standard
equal-spaced meshes. A promising approach to local refinement is provided naturally
by unstructured meshes. In such meshes, the individual cells may vary in geometry,
basic shape, and connectivity in the mesh. Consequently there is no general rule to find
neighboring cells as in structured meshes and the information about neighbors has to be
stored for each cell.

The varying cell geometry in an unstructured mesh has to be supported by the numerical
method that is supposed to work on it. A family of techniques that is particularly suited for
this purpose are finite element methods. These have the additional benefit that they can be
applied to hyperbolic, parabolic, and elliptic partial differential equations, all three types
having their own mathematical peculiarities. Consequently, finite element methods have
been used frequently for the discretization of the Navier–Stokes equations, which are of
incomplete parabolic type. For nonlinear hyperbolic partial differential equations (PDEs),
the classical Galerkin finite element method (FEM) lacks stability. This deficiency can be
amended in several ways. One of them is the addition of a least-squares term, and this route
is followed by parts of the current work. More recently, however, these methods have faced
a competitor in the form of discontinuous Galerkin methods. These allow more general
solution spaces and are even better suited for unstructured meshes, as they eliminate the
continuity requirement of classical Galerkin FEMs at the inter-element boundaries.

The possibility of choosing discontinuous (basis) functions is exploited, in the first place,
when using local refinement with so-called hanging nodes, see, for example, (van der
Vegt and van der Ven, 2002b). Hanging nodes pose additional problems in continuous
methods and thus complicate the implementation of refinement and of meshes with cells
of different shape. Without doubt, the possibility of refinement and mixed meshes will
be of great use in the context of tracking small scale structures and embedded interfaces.
For this purpose, the current work should be linked to the research of Sollie et al. (2007),
who develop a method to track interfaces in space and time with a discontinuous Galerkin
method. In this dissertation, the focus is laid on the combination of a discretization for the
Navier–Stokes equations with the solver for the nonlinear algebraic system of equations. A
pseudo-time integration is used for this purpose. This choice is in line with earlier research
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in space-time discontinuous Galerkin finite element methods (van der Vegt and van der
Ven, 2002b; van der Ven and van der Vegt, 2002; Klaij et al., 2006a), but different from the
typical Newton (-like) procedure often used in classical Galerkin methods, e.g. (Hauke
and Hughes, 1998; Barth, 1999). The reasons for this choice and the adaptations necessary
for the entropy variable approach are the subject of Chapter 5.

1.4 Software tools for the implementation of discontinuous Galerkin
finite element methods

The design of a finite element (FE) algorithm starts with the formal definition of the method
by deriving a weak formulation of the system of partial differential equations and choosing
basis functions to discretize the function spaces, cf. Chapters 4 and 5. Properties of the
FEM can then be examined and, given satisfying results, the next step is to use the method
for solving the target problem numerically. For that purpose, the developed algorithm has
to be translated into a computer program. A correct implementation not only provides a
numerical solution but can also be used to determine additional properties of the algorithm,
like approximation orders, iterative convergence rates, and computational costs.

The definition and analysis of a FEM is a complicated exercise and relies on the
mathematical skills of the developer. The third central question (cf. p. 4) addresses the
following step: the implementation as a computer program, which can be considered an
equally complex task. Additional complications arise from developments on the computer
hardware side: increasingly powerful computing systems on the one hand allow the
numerical solution of many real-world problems; on the other hand, the utilization of such
systems poses additional requirements on the implementation—parallelization is a keyword
that alludes to the added complexity. At this point it is tenable that the transformation
of a mathematical model into a capable computer code is a task that goes far beyond the
abilities of a single, say mathematically trained, person. Apart from the skill constraint,
developments are also limited by the amount of work that an individual can accomplish on
the timescale of a typical research project period. The logical consequence is that efforts
have to be joined to reach the forefront of current developments in applied mathematics.

A related difficulty regarding the efficiency of the software development process is
to maintain productivity over more than a single project. Having invested in software
design and development as described above, the effort would be wasted if there was no
possibility to reuse the result, i.e., the software artifacts, for applying new algorithms to the
same or other problems. Therefore it is important that software is built in a modular and
extensible way, representing general concepts and separating the application-related items
from abstract mathematical parts, and those in turn from underlying computer-scientific
details. Hence it is a prerequisite to decompose FEMs into recurring components and tasks,
and additional parts, which are specific to individual methods.
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The foundation of hpGEM, the software framework presented in Chapter 6, is that those
parts that are the same in many FEM implementations constitute a relatively large fraction.
Examples are the representation of the geometric mesh of the domain, the mathematical
definition of the finite elements (shape, basis functions, and degrees of freedom, see,
e.g., (Ciarlet, 1978; Brenner and Scott, 2002)), and the assembly and solution of systems
of equations. The crux is that typically these parts are ‘reinvented’ and reimplemented
by individuals when starting from scratch, incurring a large overhead in development
time and—more importantly—the potential of introducing coding errors. The hpGEM
framework, by contrast, provides well-tested data structures and methods on which the
specific FE application can build, thus cutting short the implementation time and reducing
the danger of introducing mistakes.

Naturally, the decomposition of FEMs also reveals tasks for which highly developed,
tested, and established solutions are available, e.g. from computer science (data containers
and search algorithms) or numerical linear algebra (solvers for systems of equations). It is
not so much the question whether to use them but rather how to do it. Here the benefit of
the presented software environment is that it provides access to various packages, which
enhance its functionality and capabilities.

1.5 Overview of this thesis

In the first section of this chapter, three central questions were formulated which set out
the lines that the investigations follow. In Chapter 2, the model for the considered physical
systems is formulated and the extension to generalized variable sets, which enable to
construct numerical methods for both compressible and incompressible flows, is described.

Common notation and definitions are established in Chapter 3 before two numerical
methods are presented. The first one builds on earlier research by Polner (2005) and Polner
et al. (2006) on a Galerkin least-squares finite element method for the generalized variable
approach. Their research focused on the definition of a stabilization operator that matches
the entropy variable formulation in its applicability to compressible and incompressible
fluids. This goal was reached by Polner, Pesch, and van der Vegt (2007), to which findings
from Chapter 4 of the current thesis contributed. At that point—although the performance
of the method was satisfactory for the simulation of different single fluids, doubt arose
whether the method would be able to satisfy the demands set out for the current work. The
most important reason for these doubts is the limited flexibility in conjunction with locally
refined meshes.

Therefore the focus of the current project shifted away from the Galerkin least-squares
finite element method and turned towards a discontinuous Galerkin discretization. The
latter type of finite element method is applied to the chosen model in Chapter 5. Starting
from the space-time discontinuous Galerkin method for the Euler equations by van der
Vegt and van der Ven (2002b), some modifications were necessary in connection with
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the generalized variable approach and different equations of state as pointed out by Pesch
and van der Vegt (2007). In addition, the current thesis contains the extension to the
Navier–Stokes equations and several numerical examples for different fluids.

Chapter 6, introduces hpGEM, an object-oriented software framework for discontinuous
Galerkin finite element methods. Material presented by Pesch et al. (2007) is reconsidered
and extended, describing the general ideas and structure. A few solutions are treated in
more detail and examples are given how an application code—in this case the Navier–
Stokes solver from Chapter 5—can be built upon the framework.

Conclusions are drawn in Chapter 7 regarding the three central questions posed for
this thesis. Based on the results of this dissertation, directions and objectives for further
research are suggested.
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Chapter 2

Thermodynamical and fluid dynamical foundations

Niets is volmaakt, niets is ten einde,
elke verstarring is bedrog:
alles wat was, vloeide in het zijnde,
alles wat is, vloeit nog.

Herwig Hensen (1917–1989)

2.1 Introduction

The modeling of fluids can proceed in many ways and different applications require
qualitatively different statements. In one context, the movement of fluids may be of
interest, for example for transport phenomena or to evaluate the dynamic interaction of the
flow with fixed or moving structures. In other areas, the kinetics may be negligible, but the
fluid interaction with its environments is of interest, e.g. through exchange of heat or work.

For studying different processes, it would be desirable to possess a model that is able
to capture as many of these phenomena as possible. To conform to this target, a general
description has to be used, within the bounds set out by physical understanding and
mathematical feasibility. In Section 2.2, the fundamental physical rules of conservation
of quantities like mass, momentum, and energy are applied to test volumes of a fluid,
which results in a space- and time-dependent description. The resulting mathematical
equations contain several unknown quantities; some of these—the non-convective flux
terms—are modeled by standard assumptions in Section 2.3. The system of equations is
stated in vector form and Cartesian component form in Sections 2.4 and 2.5, respectively.
Furthermore, also the thermodynamical state of the fluid has to be described, which is
subject of Sections 2.6 and 2.7.

An extension of the conservation law treatment is taken up in Section 2.8: The indepen-
dent variables in the equations are not an intrinsic property of the equations, and using
different sets of variables can lead to formulations with special properties. In particular,
some choices of variable set allow a wide range of applicability, e.g. for both compressible
and incompressible fluids.

A discussion of the dimensional aspects of the conservation equations follows in Sec-
tion 2.9. The physical equations are valid independent of the set of measuring units, and
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by non-dimensionalizing the equations the choice of units can be subsumed in a number of
dimensionless quantities that are introduced in Section 2.10. Conclusions for this chapter
and an outlook on its implications for the following chapters are given in Section 2.11.

2.2 Conservation laws

To obtain a mathematical description of fluid flow, physical conservation laws are applied
to evaluate the balance of quantities like mass, momentum and energy. For example, for
momentum, Newton’s law states that the temporal change of the momentum of a body is
equal to the sum of the forces on it. Such a balance may be applied to the overall system,
but the goal here is to model the behavior of a fluid in space and time. Hence, the system
is conceptionally divided into smaller subsystems whose interaction is quantified in the
balance equations. The subsystems may be moving: a material volume V(t) is transported
(or ‘convected’) with the local fluid velocity so that at all times the deforming volume
as well as its surface consists of the same fluid particles. Quantities that depend on the
mass contained in a subsystem are called extensive and denoted by uppercase letters;
examples are the volume V occupied by the system, the internal energy E, and the system
mass M. On the other hand, intensive quantities are those that do not depend on the
system mass. Intrinsically intensive quantities are, e.g., pressure p and temperature T .
Extensive quantities have intensive counterparts, which are obtained by dividing the
extensive quantity by the system mass or volume. Intensive quantities are denoted by
lowercase letters.1 An intensive quantity that results from dividing an extensive quantity Ψ
by the system mass M is called specific value of Ψ and denoted with the corresponding
lowercase letter ψ = Ψ/M. For example, the specific volume is defined as α = V/M. If an
intensive quantity is obtained by division by the system volume V it is called the density
of Ψ and denoted2 ψ̂ = Ψ/V , e.g. (mass) density ρ = M/V = 1/α. With these notational
conventions, the amount Ψ of some extensive physical property of arbitrary tensorial rank
contained in the material volume V(t) at time t is

Ψ(t) =
∫

V(t)

ψ̂(r, t) dV =
∫

V(t)

ρψ dV . (2.1)

The rate of change of the integral property is expressed as

dΨ
dt
=

d
dt

∫
V(t)

ρψ dV =
∫

V(t)

D
Dt

(ρψ) dV =
∫

V(t)

(
∂ρψ

∂t
+ ∇ · (ρψv)

)
dV , (2.2)

1Temperature T is the main exception to the rule; others may occur in later chapters when the focus is not on
the physical modeling but on the mathematical methods.

2In the sequel it will not always be textually specified whether a statement applies to a density or specific value
of a quantity, as the distinction is normally clear from the context or notation.
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property Ψ density of Ψ non-convective internal pro- external sup-
areal flux duction rate ply rate

ψ̂ Fψ Si Se

mass ρ 0 0 0
linear momentum ρv −� 0 F
total energy ê + 1

2ρv · v q −∇ · (v · �) F · v

Table 2.1: Expressions for the terms in the balance equation (2.4) for several properties.
The involved quantities are: mass density ρ, velocity v, stress tensor � (cf. Section 2.3.1),
external body force F (e.g. F = ρ f = ρg in case of gravity), e specific internal energy, and
the heat flux vector q (cf. Section 2.3.2). Adapted from (Edwards et al., 1991).

where the budget operator D/Dt and the velocity v are introduced. The budget operator
takes into account the local changes at fixed positions as well as the changes due to the
deformation of the surface of the volume, see, e.g., (Zdunkowski and Bott, 2004).

The material derivative dΨ/dt can be split up into two components, representing the
changes due to external and internal interactions or processes, deΨ and diΨ, respectively,

dΨ
dt
=

deΨ

dt
+

diΨ

dt

=

︷                                 ︸︸                                 ︷
−

∮
∂V(t)

Fψ · nd(∂V) +
∫

V(t)

Se dV +

︷   ︸︸   ︷∫
V(t)

Si dV , (2.3)

with the non-convective flux density Fψ (areal molecular flux), the (external) volumetric
rate of supply density Se, the (internal) volumetric production rate density field Si, and the
outward unit normal vector n. By applying the divergence theorem to the surface integral
in (2.3), the balance equation (2.2) becomes∫

V(t)

[
∂ρψ

∂t
+ ∇ · (ρψv + Fψ) − Si − Se

]
dV = 0 . (2.4)

Arguing that the integration volume V in (2.1) may be chosen arbitrarily within the fluid,
the integrand of (2.4) is required to vanish at all points in space and time, thus leading to a
partial differential equation for the evolution of the intensive quantity ψ:

∂ρψ

∂t
+ ∇ · (ρψv + Fψ) − Si − Se = 0 . (2.5)

The entities occurring in Eq. (2.5) are listed in Table 2.1 for the properties considered later
in the Euler and Navier–Stokes equations. The physical considerations leading to their
specification are summarized in the following paragraphs.

13



Chapter 2 Thermodynamical and fluid dynamical foundations

Remark 2.1 The equations can also be derived for a fixed volume V0 with surface S0, but
the resulting differential equation, unlike the integral one, is the same. �

Remark 2.2 The classical notion of differentiability of the field variables may not allow
the transition from the integral to differential equations, namely when the sought functions
contain discontinuities. �

Mass

When the fluid is considered as a single bulk substance, there is no net non-convective
flux. Mass can neither be created nor destroyed by internal or external influence, which is
reflected by the continuity equation,

∂ρ

∂t
+ ∇ · (ρv) = 0 . (2.6)

Momentum

Due to the interaction of the molecules of a fluid its motion evokes forces, which may
redistribute momentum ψ̂ = ρv in the fluid. Consequently, through every (imaginary)
surface in the fluid, there is a momentum flux Fψ. By physical considerations one deduces
that the surface force per unit area, which is frequently called stress in the physics of fluids
and solids, in each point of the surface can be represented as the scalar product � · n of
a symmetric rank two tensor � and the local surface normal n, see, e.g., (Warsi, 1999).
This product can be readily incorporated into Eq. (2.3). The properties and functional
dependence of the tensor � are discussed further in Section 2.3.1.

Additionally, the flow may be modified by external body forces F, e.g. gravitational,
electric, or magnetic forces; also apparent forces, such as the centrifugal force in a rotating
system, would show up here. The body force F (per volume) is expressed as the product
of density and the force per unit mass, hence F = ρ f ; the force per unit mass f can also
be interpreted as an acceleration, for example in the gravitational case it is given by the
gravitational acceleration, f = g. In summary, the balance equation (2.5) for momentum
has the form

∂ρv
∂t
+ ∇ · (ρvv − �) − ρ f = 0 . (2.7)

Note that two vectors without an interposed operator form a tensor product, as in the
argument of the divergence operator in (2.7).

Energy

Another quantity that is balanced in the form of Eq. (2.5) is the total energy, etot = e + k,
the sum of internal energy e and kinetic energy k = (v · v)/2. The mechanical changes
are given by the work done on the fluid by external forces F and surface forces � · n.
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2.3 Constitutive equations for the non-convective transport terms

Additionally, energy may be exchanged across the boundary of a volume in the form of a
heat flux q. Hence the integral balance for the volume V(t) is

d
dt

∫
V(t)

ρ(e + 1
2 v · v) dV =

∫
V(t)

ρ(v · f ) dV +
∫

∂V(t)

v · � · nd(∂V) −
∫

∂V(t)

q · nd(∂V) , (2.8)

which translates to the differential expression

∂

∂t
(ρ(e + k)) + ∇ · (ρ(e + k)v) − ∇ · (� · v) + ∇ · q − ρ f · v = 0 . (2.9)

Remark 2.3 The flux q may also concern other energy forms, e.g. radiation. Volumetric
energy sources are not considered here. �

An overview of the conservation equations with the chosen constitutive relations can be
found in Section 2.4.

2.3 Constitutive equations for the non-convective transport terms

Regarding Eqs. (2.7) and (2.9), so far the question is open how the non-convective fluxes
depend on the state of the fluid. In this section, standard assumptions for the functional
dependence of the stress tensor � and the heat flux vector q are discussed.

2.3.1 Viscous stress tensor: Newtonian fluids

In the balance equations for momentum and energy given in Section 2.2, the stress tensor
or pressure tensor � has been used to define the non-convective flux of momentum. It
contributes to the total momentum flux through a surface element (imaginary or real) in or
at the boundary of the fluid.

As has been mentioned previously, the stress tensor is a symmetric rank two tensor.3

From the physical point of view, � can be decomposed into a pressure-related part and a
contribution by the viscous processes in the fluid: � = −p� + �visc, with the unit tensor �.
The pressure p is the thermodynamic pressure in the fluid and its relation to other state
variables is subject of Section 2.6. The viscous contribution, on the other hand, depends
on material properties of the fluid and on the flow, i.e., the fields of the dynamic variables,
particularly the velocity field v. In the following, the simplest—namely linear—ansatz for
�visc in terms of v is described.

Using the rate of deformation tensor or rate of strain tensor

� B 1
2 (∇v + (∇v)ᵀ) , (2.10)

3The symmetry requirement holds for nonpolar fluids.
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Chapter 2 Thermodynamical and fluid dynamical foundations

the most general linear form that satisfies the physical constraints is (Landau and Lifshitz,
1963, p. 48)

�visc = (λ − 2
3η)(∇ · v)� + 2η� , (2.11)

involving two positive scalar coefficients: the dynamic viscosity or shear viscosity η, and
the dilatational viscosity or bulk viscosity λ, which will be further examined below.

Remark 2.4 The above definition of the two scalar coefficients has to be contrasted with
a different possibility that is also often encountered, namely

�visc = λ̃(∇ · v)� + 2η̃� .

The coefficients η̃ and λ̃ are called the first and second coefficients of viscosity, respectively.
The splitting in Eq. (2.11), however, allows to differentiate between two mathematical
components of the tensor �visc. Noting that every tensor � can be decomposed into three
parts, an isotropic component (which does not change when the frame of reference is
rotated), and anisotropic parts (with zero trace), of which one is symmetric and the other
one asymmetric, hence

� = 1
3� ··��︸   ︷︷   ︸
isotropic

+

symmetric︷                     ︸︸                     ︷
1
2 (� + �ᵀ − 2

3� ··��)+

asymmetric︷      ︸︸      ︷
1
2 (� − �ᵀ)︸                                       ︷︷                                       ︸

anisotropic/traceless

,

with the double contraction notation � ··�, one finds that the definition in (2.11) leaves the

isotropic part, 1
3� ··�visc � = λ∇ · v� ,

anisotropic symmetric part, 1
2 (�visc + �

ᵀ
visc −

2
3� ··�visc �) = − 2

3η(∇ · v)� + 2η� ,

of the viscous stress tensor �visc governed by just one parameter each. Also, frequently
the dilatational viscosity λ may be set to zero, as will be reasoned below. By comparison
with (2.11) the viscous tensor �visc is found to be traceless in that case. �

The importance of the linear ansatz for the dependence of stress on the rate of strain
derives from the fact that many technically interesting fluids are modeled quite well by it.
Especially most gases and their mixtures, but also liquids with low molecular weight, like
water and mineral oils, belong to this class of fluids, which are named Newtonian fluids.

Viscosity coefficients

In general, both the dynamic and dilatational viscosity coefficients depend on the thermo-
dynamic state and the composition of the fluid, but by definition not on the shear rate, e.g.
η = η(p,T ), λ = λ(p,T ). For many materials and flows, the dependence is assumed either
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2.4 The system of equations in vector notation

to be constant or to have a simple relationship. For instance the Sutherland formula for the
dynamic viscosity sets η ∼

√
T and neglects the pressure dependence.

Kinetic gas theory finds the dilatational viscosity λ to be nonzero if kinetic energy of the
fluid molecules can be transferred to internal degrees of freedom. The value of λ depends
on the characteristic time of the energy transfer and vanishes for monatomic fluids. Often,
the dilatational effect is dominated by the shear viscosity, and many studies thus use the
Stokes hypothesis λ = 0.

2.3.2 Heat flux density

The non-convective flux of internal energy q is related by thermodynamics to temperature,
a quantity that describes the heat of a body or medium. Following Fourier’s law of heat
conduction—valid for cases in which the temperature gradient in the fluid is small—the
heat flux density due to thermal conduction is modeled as

q = −κ∇T , (2.12)

with the scalar thermal conductivity κ(p,T ) > 0. Landau and Lifshitz (1963, p. 187)
discuss the applicability of this linear approximation and give values of κ for different
materials, see also (Atkins and de Paula, 2002).

2.4 The system of equations in vector notation

In a single phase, the flow is described by the continuity equation for mass conservation,

∂ρ

∂t
+ ∇ · (ρv) = 0 , (2.13a)

the equation for the momentum balance, which for Newtonian fluids can be written as

∂ρv
∂t
+ ∇ · (ρvv + p� − (λ − 2

3η)(∇ · v)� − 2η�) − ρ f = 0 , (2.13b)

and an equation that balances the total energy. Also here, the Newtonian assumption is
made and the energy is assumed to be either of kinetic (contained in the macroscopic
motion of the fluid) or internal nature (held by the internal degrees of freedom of the fluid
molecules). With these assumptions the energy equation can be given the form

∂

∂t
(ρ(e + k)) + ∇ · (ρ(e + k)v)

− ∇ · [(−p� + (λ − 2
3η)(∇ · v)� + 2η�) · v] − ∇ · (κ∇T ) − ρ f · v = 0 .

(2.13c)
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Chapter 2 Thermodynamical and fluid dynamical foundations

Remark 2.5 In the following chapters, the pressure term ∇ · (pv) in the energy equation
is frequently added to the divergence term of the convective fluxes. �

2.5 Choice of a coordinate system

It is a fundamental property of the laws of physics that they are independent of the choice
of coordinate system. To solve practical problems, however, the differential equations
that have been derived so far need to be expressed with respect to a coordinate system. A
particular system may be selected based on considerations regarding symmetries of the
problem being treated and the complications which may occur in the coordinate equations
(e.g., singularities). The numerical techniques developed here are meant for application in
general and time-dependent geometries, which may not even be known a priori. Hence
exploiting symmetries when choosing the coordinate system is not possible.

Instead, a fixed Cartesian coordinate system is used, which leads to a relatively compact
coordinate form of the equations. A position vector x can be represented by the d-tuple of
coordinates (x1, . . . , xd) with respect to this Cartesian system. For brevity, when using the
coordinate form of the equations, the Einstein summation convention is implied for repeated
indices. Summation indices are—where possible—chosen from the range m, . . . , s.4 Free
indices that enumerate different coordinate directions are typically ı̄, ̄, or k̄. An index with
an overbar, like ı̄, concerns the space dimension(s), i.e., ı̄ = 1, . . . , d, see also Chapter 3.
With this choice of coordinate system and notation, the Navier–Stokes equations (2.13)
take the form

∂ρ

∂t
+
∂(ρvn̄)
∂xn̄

= 0 , (2.14a)

∂(ρvı̄)
∂t
+
∂(ρvı̄vn̄ + δı̄n̄ p)

∂xn̄
=

∂

∂xn̄

(
(λ − 2

3η)
∂vm̄

∂xm̄
δı̄n̄ + 2ηDı̄n̄

)
+ ρ fı̄ , (2.14b)

∂(ρ(e + k))
∂t

+
∂((ρ(e + k) + p)vn̄)

∂xn̄
=

∂

∂xm̄

[(
(λ − 2

3η)
∂vr̄

∂xr̄
δm̄n̄ + 2ηDm̄n̄

)
vn̄

]
+

∂

∂xn̄

(
κ
∂T
∂xn̄

)
+ ρ fn̄vn̄ .

(2.14c)

The Euler flux matrix with the columns Fe
j , j = 0, . . . , d, contains the time derivative

4Sometimes letters are used as summation indices which have also another meaning, e.g. n is also used as
time slab index and to denote a normal vector, and s symbolizes entropy in the treatment of thermodynamical
properties. However the meaning can always be inferred from the usage within an equation.
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arguments and the flux terms so that ∂Fe
n/∂xn represents the left hand side of (2.14):5

Fe =


ρ ρv ̄
ρvı̄ ρvı̄v ̄ + pδı̄ ̄

ρ(e + k) v ̄(ρ(e + k) + p)

 . (2.15)

The corresponding matrix with the diffusive fluxes reads

Fd =


(0) ̄

(λ − 2
3η)

∂vm̄

∂xm̄
δı̄ ̄ + 2ηDı̄ ̄(

(λ − 2
3η)

∂vm̄

∂xm̄
δ ̄n̄ + 2ηD ̄n̄

)
vn̄ + κ

∂T
∂x ̄

 . (2.16)

2.6 Thermodynamics

In Section 2.5, the component form of the conservation equations for mass, momentum,
and energy has been obtained. On closer inspection, a problem remains: There are d + 2
prognostic equations (i.e., ones that contain a temporal derivative ∂/∂t), but in total d + 4
unknowns are present in the equations, namely density, d velocity components, pressure,
energy, and temperature. To close the system of equations, two additional relations
have to be specified. Neglecting temporarily the motion of the fluid,6 these relations
have to describe the interplay of density, pressure, temperature, and internal energy. The
description of matter in terms of these variables is the subject of thermodynamics. Standard
thermodynamics is described in many textbooks, e.g. (Panton, 1984; Atkins and de Paula,
2002; Zdunkowski and Bott, 2004) and suffices for the goals pursued here. In the remainder
of this section, some relations of particular use in the sequel are derived or mentioned. For
details the aforementioned references may be consulted.

The total energy etot = e + k, for which conservation is postulated, is split up in the
kinetic part k and a not directly observable part, the internal energy e, which is related to
the energy stored in internal degrees of freedom of the molecules. The latter means that
the physical effects responsible for the energy content are left unspecified. Consequently
the processes involving the conversion of internal energy and its interaction with other
variables of state have to be modeled or determined experimentally. From the conservation
statement for energy, which is called the first law of thermodynamics in this context, it
follows that the change de of the internal energy of a system is given by the sum of the

5In this notation, the indices ı̄ and ̄ are not bound by the left hand side and thus enumerate rows and columns
of the matrix, respectively.

6Neglecting the velocity dependence effectively means that the thermodynamic state is assumed independent of
the dynamic state, except by indirect effects, e.g. through pressure changes in a convergent or divergent mass
flux field.
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Chapter 2 Thermodynamical and fluid dynamical foundations

heat (per unit mass) that is added to the system, dq, and the work that is performed on it,
da = −p dα + �visc · d f ,

de = dq + da . (2.17)

Both energy forms on the right hand side constitute inexact differentials d, i.e., the value of
an integral like

∫ z2

z1
dq not only depends on the initial and end state, z1 and z2, respectively,

but also on the path (or in physical terms: the process) that is used for the integration. This
is in contrast to the variables of state—like internal energy, density, and pressure—whose
value only depends on the state z and not on the integration path or process. Equation (2.17)
is written in intensive form so that it is also applicable to systems that exchange mass
with their surroundings. Considering the internal energy e in terms of the state variables α
and T leads to the introduction of the specific heat at constant volume,

cv B

(
∂e
∂T

)
α

=
d

dT
(q + a) . (2.18)

Denoting the viscous contribution to the energy balance as dw = �visc · d f , the energy
balance can be written as

de + p dα = d(q + w) . (2.19)

Applying the Legendre-transformation

de + p dα = d(e + pα) − α dp , (2.20)

on the right hand side, the specific enthalpy is introduced as

h = e + pα , (2.21)

which measures the energy exchange of a system at constant pressure. Analogously to the
internal energy case, this leads to the definition of the specific heat at constant pressure,

cp B

(
∂h
∂T

)
p
=

d
dT

(q + w) . (2.22)

The introduction of entropy s and the second law of thermodynamics are omitted here
and the previously cited references should be consulted for details. The fundamental
differential equation of thermodynamics is

T ds = de + p dα . (2.23)

In combination with the specific entropy s, additional state functions can be introduced.
For Section 2.8.2, in particular the chemical potential µ = h − T s is of interest. It is a
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potential in terms of the variables p and T , which is expressed by the de Donder statements,(
∂µ

∂T

)
p
= −s ,

(
∂µ

∂p

)
T
= α . (2.24)

Another way to characterize different fluids, especially regarding their compressibility,
is given by two parameters that are defined as the relative changes of the specific volume
with temperature and pressure, respectively,

isobaric expansion coefficient, αp B
1
α

(
∂α

∂T

)
p
, (2.25a)

isothermal compressibility, βT B −
1
α

(
∂α

∂p

)
T
. (2.25b)

Both are material coefficients and in general depend on the thermodynamical state. Knowl-
edge of these two quantities and either cp or cv in terms of the state allows to work out
the previously mentioned equations of state, too, see, e.g., (Polner, 2005). In case αp = 0,
then the variation of the specific volume at constant pressure vanishes, (δα)p = 0, which is
called temperature incompressible. If βT = 0, then the specific volume is independent of
pressure (at constant temperature), (δα)T = 0, and the material is pressure incompressible.
If both coefficients are zero, the material is called incompressible.

Many thermodynamical properties of a fluid can be computed when a small number of
quantities is known. In the following, the three state functions αp, βT , and cp are assumed
given (from measurements or theoretical considerations). As an example of the thermo-
dynamic calculations needed in Section 2.8 and Appendix A, the derivatives (∂e/∂T )p

and (∂e/∂p)T , are related to the three known quantities. Starting from the chemical
potential µ = e + pα − T s, whose natural coordinates are p and T , one finds from (2.24):

−s =
(
∂µ

∂T

)
p
=

(
∂e
∂T

)
p
+ p

(
∂α

∂T

)
p
− s − T

(
∂s
∂T

)
p

(2.26)

⇒

(
∂e
∂T

)
p
= −p

(
∂α

∂T

)
p
+ T

(
∂s
∂T

)
p
= −pααp + cp , (2.27)

where (∂s/∂T )p = cp/T , which follows from (2.22) and (2.23), has been substituted.
Further, by using the Kelvin–de Donder relation (∂s/∂p)T = −(∂α/∂T )p, see, for example,
(Zdunkowski and Bott, 2004), the derivative with respect to pressure is found from

α =

(
∂µ

∂p

)
T
=

(
∂e
∂p

)
T
+ α + p

(
∂α

∂p

)
T
− T

(
∂s
∂p

)
T

(2.28)

⇒

(
∂e
∂p

)
T
= −p

(
∂α

∂p

)
T
+ T

(
∂s
∂p

)
T
= pαβT − Tααp . (2.29)
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Having introduced these general relations, some of the mentioned thermodynamic
functions need to be specified to include the behavior of a given fluid in the prognostic
equations (2.14).

2.7 Thermodynamical models for fluids

In the previous section, several quantities have been introduced that characterize the
thermodynamical state of a substance. The problem that arose earlier was to determine
how the state of a fluid changes given a certain stimulus, for example a modification of
density or internal energy—cf. Eqs. (2.14a) and (2.14c). A solution to this problem is often
provided in the form of equations of state (EOS). Such equations relate the thermodynamic
quantities with each other. For the current purposes, a description with two equations
of state is suitable: For each medium, a caloric EOS for the internal energy is given in
terms of the specific volume and temperature, e = e(α,T ), and a thermal EOS relates
pressure, specific volume, and temperature, for example in the form p = p(α,T ). Given
the thermodynamical theory from Section 2.6, these two would be sufficient to determine
all other relations, but for ease of reference an additional equation is given for entropy. All
mentioned relations depend on the medium considered. The following sections contain the
equations of state of three important fluid models.

2.7.1 Ideal gas

When the volume of the molecules of a gas is negligible and the potential energy of the
their interaction is small compared to the sum of the molecules’ kinetic energies,7 then the
substance is called an ideal gas. For the purposes pursued here, an ideal gas is assumed to
fulfill the following equations of state:

e(T ) = e0 + cv(T − T0) , (2.30a)

p(α,T ) =
R T
α

, (2.30b)

where R is the gas constant, and cv is the specific heat at constant volume, which has
additionally been assumed constant. The entropy of an ideal gas is given by8

s(α,T ) = s0 + R ln
α

α0
+ cv ln

T
T0

. (2.31)

7Obviously the potential of the interaction cannot be zero, for otherwise there would be no interaction between
the molecules at all.

8Note that the temperature T0 in (2.31) is not necessarily the same as in (2.30a). For each equation, T0 (and
α0) belongs to the state at which the entropy (energy) attains the value s0 (e0). For Eq. (2.30a), the base
temperature is often set to T0 = 0, which is not possible in (2.31). If a single state (p0, α0,T0) is chosen, then
it must fulfill (2.30b).
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2.7 Thermodynamical models for fluids

For the compressibility parameters defined in (2.25) one finds

αp =
1
T
, and βT =

1
p
. (2.32)

The sound speed a in an ideal gas is given by

a =

√(
∂p
∂ρ

)
s
=

√
γα

βT
=

√
γp
ρ
=

√
γRT , (2.33)

with the adiabatic coefficient γ = cp/cv, the ratio of the specific heats at constant pressure
and volume.

2.7.2 Van der Waals gas

In Section 2.7.1, an ideal gas was defined by the negligible volume of the molecules of
a gas and the low degree of their interaction. At low densities this idealization holds for
all gases, but at higher densities the interaction of the molecules may change the behavior
of the gas. Other models have been developed that take into account the finite volume
occupied by the molecules (covolume EOS) and additionally the attraction of the molecules,
for example the van der Waals EOS.

The assumptions underlying the van der Waals (vdW) EOS are (i) that the molecules are
finite-sized impenetrable spheres whose specific volume b reduces the available volume
for the expansion of the gas from α to α − b, and (ii) the movement of the molecules
is modified by the attractive forces, which change the pressure through the frequency
and force of molecular collisions and are modeled by a quadratic term in density with
proportionality constant a. See for example (Atkins and de Paula, 2002) for a justification
and values of the parameters a and b. The equations of state read:

e(α,T ) = e0 + cv(T − T0) + a
(

1
α0
−

1
α

)
, (2.34a)

p(α,T ) =
R T
α − b

−
a
α2 , (2.34b)

where again cv has been assumed constant. Note that in this case, the specific heat at
constant pressure cannot be constant, as follows from

cp − cv =
R2α3T

Rα3T − 2a(α − b)2 . (2.35)

The derivation of the previous relationship as well as of the formulae for the compressibili-
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Figure 2.1: Pressure of a van der Waals gas as a function of the specific volume at different
temperatures. All quantities in the diagram are scaled by the values of the state coordinates
in the critical point.

ties can be found in (Polner, 2005),

αp =
1

α
α−b T − 2aα−b

Rα2

, and βT =
1

α
α−b p − a

α2

(
2 − α

α−b

) . (2.36)

The entropy of the vdW gas is

s(α,T ) = s0 + R ln
α − b
α0 − b

+ cv ln
T
T0

. (2.37)

Naturally, the two additional parameters in the vdW EOS allow to better capture the
behavior of (real) gases. Further, the EOS reproduces the ideal gas model for a = 0, b = 0
and at sufficiently high temperatures or low densities. In general, however, the van der
Waals gas is substantially more complicated as the pressure equation of state (2.34b) is
a rational function in p, α, and T , and computing arbitrary states is made difficult by the
nonlinearity. For temperatures below a critical value Tc, the (α, p)-graph is non-monotonic
in a neighborhood of the critical point (αc, pc), cf. Figure 2.1, which makes sensible
state evaluations impossible in that range. Consequently, the (iterative) computation
of thermodynamical parameters fails close to the critical point. This deficiency can
be remedied, e.g. with the Maxwell construction. In this work only cases with states
away from the critical point are treated, so that the monotonicity of the state functions is
guaranteed.
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2.7.3 Other models for compressible fluids

The modeling of fluids has gone far beyond the two previously presented examples.
The immense broadening of theoretical understanding, experimental and measurement
capabilities, and specialized technical applications have contributed to the large diversity
of equations of state that are presently available to describe (compressible) fluids. Many
references to relevant literature can be found in (Sengers, 2000). The principle that the
equations relate the state variables as in (2.30) or (2.34) remains the same, but often the
equations become more complicated than in the cited examples. Unfortunately, many
of these EOS apply only in a certain region of the thermodynamical state space. A
manifestation of such a restriction has already surfaced in Section 2.7.2: The lack of
monotonicity at temperatures below the critical value Tc is physically questionable and
doomed to mathematical complications. In the later sections of this chapter, and equally
in the final numerical method, equations of state have to be inverted to convert between
different variables. The inversion is not generally possible if an EOS is non-monotonic.
None of the more involved fluid models will be detailed here but their usage in the
developed formalism is possible provided they are applied in a subset of the state space
where the thermodynamical functions are defined unambiguously.

A fundamentally different fluid model from those described so far is the incompressible
fluid. It is of comparable importance as the ideal gas because it delivers a widely applicable
description that represents the essential physics of many processes: Flows in which the
pressure differences are not sufficiently large to lead to a significant compression of the
fluid are usually considered with the incompressible fluid model.

2.7.4 Incompressible fluid

Incompressibility is an idealization that can—from the theoretical point of view—not
be attained, but it is a useful assumption for modeling many physical processes. In the
thermodynamical framework, the compressibility coefficients are both zero, αp = 0, βT = 0.
Moreover, the pressure loses its thermodynamic meaning and becomes a purely mechanical
variable, cf. (Panton, 1984); hence no EOS for the pressure exists. Due to the constant
density, the internal energy depends only on temperature, and, assuming again a constant
specific heat at constant volume, cv, the energy is given by

e(T ) = e0 + cv(T − T0) . (2.38)

For incompressible fluids the specific heats at constant volume and at constant pressure
are equal, cv = cp, and hence their ratio, the adiabatic coefficient, is γ = 1. The entropy is
given by

s(T ) = s0 + cv ln
T
T0

. (2.39)
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The incompressible Navier–Stokes equations

Assuming incompressibility and homogeneity of the fluid, the Navier–Stokes equations
can be written without any reference to density at all:

∇ · v = 0 , (2.40a)
∂v
∂t
+ ∇ · (vv + p̃�) = ν∆v , (2.40b)

with the kinematic viscosity ν = η/ρ and the pressure given analogously by p̃ = p/ρ.
The energy equation can be converted to a prognostic equation for temperature. The
transformed relations are, however, not used further, as the goal of the present work is to
develop a numerical tool that applies to both compressible and incompressible flow.

Having derived the equations for fluid flow and formulated the equations of state for
different fluids a closed system of equations is available. The next section takes a look at
this system from a different angle.

2.8 The Navier–Stokes equations in terms of different sets of
variables

Starting from the consideration of conservation laws in Section 2.2, the Navier–Stokes
equations for fluid flow have been derived, and they were given in Cartesian coordinate
form in Section 2.5. The system of partial differential equations was closed by adding two
equations of state, which characterize the thermodynamical properties of the considered
fluid. It is important to realize that, just like the possibility to pick different coordinate
systems, the set of variables that is used to find a solution to the Navier–Stokes equations
in space and time is not an intrinsic property of the set of equations. When deriving the
equations, conserved quantities were balanced, and it may seem most natural to treat
these as the variables: the densities of mass ρ, the momentum components ρvı̄, and total
energy ρetot.9 However, it has already been shown that in some cases, e.g. due to additional
knowledge about specific physical properties, a different set of variables may be more
beneficial to use, see the equations for incompressible media above.10 Also in other
contexts replacing some of the variables by others (e.g., energy by enthalpy) may expose
or exploit special properties and possibly make the system easier to solve.

9As mentioned previously, additional unknowns are included in the PDE system and have to be related:
temperature T and pressure p.

10Note that in the case of the incompressible Navier–Stokes equations not only the variables are changed, so that
typically momentum components are replaced by velocities vı̄ and temperature takes the place of total specific
energy, but also the equations are modified, though this concerns mainly the division by a constant.
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In the following paragraphs, transformations to different variable sets are treated, but
in contrast to the examples mentioned so far, these transformations primarily aim at
mathematical targets rather than at exploiting special physical knowledge. Parts of the
analysis of the transformed systems rely on the quasi-linear form of the Navier–Stokes
equations, which is discussed in Section 2.8.1. Section 2.8.2 introduces different variable
sets and highlights their properties.

2.8.1 Quasi-linear form of the Navier–Stokes equations

For conservation variables U B [ρ, ρvı̄, ρetot], the Navier–Stokes equations (2.14) can be
written in the form

∂U
∂t
+
∂Fe

n̄

∂xn̄
=
∂Fd

n̄

∂xn̄
+ S , (2.41)

with Fe
ı̄ the Euler and Fd

ı̄ the diffusive flux in the xı̄-coordinate direction, and possible
source terms included in S . To obtain the quasi-linear form of this equation use will
be made of the notation AU

ı̄ = ∂Fe
ı̄ /∂U for the Jacobians of the Euler flux in the xı̄-

coordinate direction (including the pressure term). The diffusive fluxes in the Navier–
Stokes equations for Newtonian fluids depend only on the first order derivatives of the
velocities, cf. Section 2.3.1, which is exploited by the exact relation Fd

ı̄ = KU
ı̄n̄∂U/∂xn̄.

With these definitions, Equation (2.41) can be rewritten as

∂U
∂t
+ AU

n̄
∂U
∂xn̄
=

∂

∂xm̄

(
KU

m̄n̄
∂U
∂xn̄

)
+ S , (2.42)

which is the starting point for introducing a different set of variables V . In the quasi-linear
context, the Jacobian of the transformation U(V), i.e., AV

0 = ∂U/∂V , is inserted in front of
every partial derivative of U, which is then replaced by a partial derivative of V ,

AV
0
∂V
∂t
+ AV

n̄
∂V
∂xn̄
=

∂

∂xm̄

(
KV

m̄n̄
∂V
∂xn̄

)
+ S , (2.43)

with AV
ı̄ = AU

ı̄ ∂U/∂V and KV
ı̄ ̄ = KU

ı̄ ̄ ∂U/∂V .

Remark 2.6 The mapping between U and V must be bijective, which, in symmetrization
theory, is ensured by requiring ∂U/∂V to be positive definite (Barth, 1999). �

Finally, it should be emphasized that using a different variable set is also possible in the
original nonlinear set of equations (2.41) by interpreting the functional dependence on U
as U(V). The numerical methods derived in Chapters 4 and 5 take this route and solve
the nonlinear equations. The quasi-linear form is, on the one hand, the starting point
for numerical analysis, and on the other hand the linearization can be used to solve the
nonlinear system with a Newton-like method, which will be expounded in Chapter 4.
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The question that remains is, obviously, which alternative variable sets V are suitable
for solving the Navier–Stokes equations. The following section contains an overview of
several possibilities. Note that the letter V , which so far signifies a generic variable set,
symbolizes a specific set there. In many derivations later on, V is used in the generic sense
again, unless its meaning is explicitly restricted.

2.8.2 Sets of variables for the Navier–Stokes equations

Some variable sets that may be used in the Navier–Stokes equations are

conservation variables, UB
(
ρ, ρvı̄, ρetot

)ᵀ
, (2.44)

primitive variables with density, Y ′B (ρ, vı̄,T )ᵀ , (2.45)

primitive variables with pressure, Y B (p, vı̄,T )ᵀ , (2.46)

entropy variables, V B
1
T

(
µ −

1
2

v2
n̄, vı̄,−1

)ᵀ
. (2.47)

The total energy etot is, as previously mentioned, assumed to consist of internal energy e,
and kinetic energy k B v2

n̄/2, i.e., etot = e + v2
n̄/2.

Having stated the different variable sets one may ask which consequences the selection
of a specific set has for the numerical method to be derived. An overview of previous
findings regarding mathematical properties and practicality is given next.

Conservation variables
Many numerical methods for compressible fluids are based on conservation variables,
presumably because of their natural occurrence when deriving the conservation laws and
because it is easy to derive numerical discretizations based on them. On the other hand,
conservation variables are not suitable for computing incompressible flows, which is
apparent because the Jacobians AU

ı̄ are not well-behaved in the incompressible limit: some
of their entries tend to infinity or to the (undefined) quotient 0/0, see (Hauke and Hughes,
1998, p. 7). Compared with the other variable sets, Hauke and Hughes (1998, p. 34) find
the accuracy to be mediocre (deteriorating for nearly incompressible flow) and systematic
errors occur in regions of outflow boundary layers.

Primitive variables with density
The same drawbacks inherent to conservation variables (because of density being included)
also apply in this case. In particular, the incompressible limit is not well-behaved, which is
why this variable set is discarded from further investigations in the current work.

Primitive variables with pressure
When pressure primitive variables are used then the incompressible limit of the Navier–
Stokes equations is well-defined. Additionally, implementations using the Jacobians AY

i
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2.8 The Navier–Stokes equations in terms of different sets of variables

are more efficient compared to other variable sets, because of the sparseness and simple
form of the matrices, see p. 138. Hauke and Hughes (1998, p. 34) find that the primitive
variables lack some of the robustness of other variable sets.

Entropy variables
Entropy variables have several intriguing properties of both mathematical and physical
relevance. First, they have the well-defined incompressible limit in common with the
pressure primitive variable set. They are thus applicable to a wide range of physical
conditions, a property that can be preserved by suitably designed numerical methods.
Unlike the Jacobians for pressure primitive variables, those for entropy variables, AV

i ,
are full matrices, but they have the additional property of being symmetric, see p. 140.
The matrix AV

0 is even symmetric positive definite, which degenerates to symmetric
positive semi-definiteness in the incompressible case. The symmetrization property for the
system (2.43) is actually the origin of the definition of entropy variables, see, e.g., (Barth,
1999; Tadmor, 2003). Also, the matrix KV = [KV

ı̄ ̄]ı̄ ̄ is symmetric positive semidefinite.
As Hughes et al. (1986, p. 231) show, an interesting consequence of the definition of the
entropy variables is that certain classes of finite element methods based on them satisfy
the Clausius–Duhem inequality, i.e., they fulfill the entropy production inequality and thus
converge to the physically correct entropy solution. Additional advantages of symmetrized
forms in general include global energy stability of Galerkin least-squares and discontinuous
Galerkin methods, dimensional consistency of the inner product of test and trial functions
in the weak form, and a systematic approach to eigenvector scaling (Barth, 1999, p. 198).
Also regarding robustness and the accuracy of some derived quantities, entropy variables
have been found favorable (Hauke and Hughes, 1998, p. 34).
The theoretical and practical advantages of entropy variable formulations are opposed
by the complexity of using them, which may also be the reason why they have not been
exploited more often. The derivation of the variable transformations requires a number
of thermodynamical relations and knowledge about the thermodynamical behavior of the
considered fluid, see Appendix A. Furthermore, the relationship between entropy and
conservation variables is nonlinear, which not only makes the computation more costly
but might also incur loss of accuracy when transforming back and forth. Finally, standard
boundary conditions may become cumbersome to impose, depending on the numerical
method.

In conclusion, the same formulation of the equations may be used for compressible
and incompressible flows provided one solves for pressure primitive or entropy variables
(Hauke and Hughes, 1998). The numerical method, however, has to maintain this property
by avoiding to exploit special cases (e.g., by using an ideal gas numerical flux). When
necessary it has to make use of concepts suitable for both flow types, for instance through
stabilization with suitably defined operators. The development of such methods is the goal
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of Chapters 4 and 5. The Jacobians of the variable transformations and fluxes for pressure
primitive and entropy variables are summarized in Appendix A.

2.9 Dimensional analysis

For the problem of flow of a fluid with heat conduction as described in Section 2.5,
Table 2.2a on page 32 shows a collection of relevant variables that have been identified in
the conservation statements and the thermodynamical considerations. For each variable,
its dimension with respect to the fundamental quantities (or primary quantities) length L,
massM, time T , and temperatureW is given. These quantities are considered unrelated
and the column rank of the dimension matrix is four, which shows that all primary
quantities are needed. Reference values or units for the four magnitudes are chosen based
on representative values of length Lr, density ρr, velocity vr, and temperature Tr.

Dimensionless groups are found by diagonalizing the dimensional matrix of Table 2.2a,
yielding Table 2.2b on page 32, which is now discussed in more detail. In the first block
of the table, the chosen reference values for the fundamental quantities are listed; these
can be regarded as defining a set of units for measuring physical quantities. Hence,
every quantity q can be written as the product of a dimensionless number, q∗ , which
gives the multiplicity of the second factor, the reference value qr, i.e., q = q∗qr. The
measurement system with respect to these reference values can be used to measure any
quantity whose dimensional formula involves no other fundamental quantities besides
those four introduced above. It is customary, however, to introduce additional scales for
certain quantities. In this way one can scale the dimensionless quantity to be on the order of
magnitude one.11 For every additional scale that is introduced, a dimensionless conversion
coefficient with respect to the scale defined by the reference quantities has to be taken into
account. As an example, a scale ηr′ for the dynamic viscosity η of the fluid is chosen. From
Table 2.2b one finds that the scale implied by the four fundamental quantities is ηr = Lrρrvr.
By defining Reη B ηr/ηr′ , the dynamic viscosity can be expressed as η = η′ηr′ = η

′Re−1
η ηr.

Thereby additional reference values are introduced for the physical parameters λ, η, cp, cv,
and κ in the second block of Table 2.2b and the following dimensionless coefficients are
introduced:

ReλB
ρrvrLr

λr′
, (2.48)

Reynolds number, ReηB
ρrvrLr

ηr′
, (2.49)

Prandtl number, Pr B
ηr′cpr′

κr′
, (2.50)

11Obviously this kind of scaling is only possible if the physical quantity q does not vary over more than one
order of magnitude.
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Eckert number,12 Ec B
v2

r

cpr′Tr
, (2.51)

adiabatic coefficient, γ B
cpr′

cvr′
. (2.52)

These dimensionless numbers show up when the equations are non-dimensionalized and
they often act as weights on terms which represent different physical processes. They are
necessary because the dimensionless quantities q′ have undergone an additional, arbitrary
scaling.

The goal of the non-dimensionalization is to remove all references to (arbitrary) scales
from the equations and to describe the problem entirely in terms of dimensionless values.
However, the typical goal of a simulation is to reproduce a physical configuration. Conse-
quently there has to be a procedure to convert between a description using physical values
and the dimensionless formulation. This transformation is evident from Table 2.3:

• Starting from a set of physical values, define both the basic reference quantities
{Lr, ρr, vr,Tr}, and the additional ones {λr′ , ηr′ , cpr′ , cvr′ , κr′ }.
It is important to note that the way these quantities are defined matters in so far as a
later re-scaling of a dimensionless result has to use the same method.13

Given the above values, also the dimensionless numbers (2.48)–(2.52) can be evalu-
ated, and all physical values that define the problem can be divided by their reference
quantities to obtain the dimensionless values used in the non-dimensionalized equa-
tions, e.g., L∗ , ρ∗ , v∗ , T ∗ , p∗ , e∗ , λ′, η′, c′p, c′v, κ′.

• To scale dimensionless results to physical values, for example the result of a simula-
tion using the non-dimensionalized equations, the dimensionless coefficients q∗ or q′

have to be known along with the values of the dimensionless numbers (2.48)–(2.52).
By assigning the four reference values {Lr, ρr, vr,Tr}, all derived reference values are
set (cf. Table 2.3) and the physical quantities can be computed.

2.10 Non-dimensionalization of the equations

All physically correct equations have to be dimensionally homogeneous, hence all sum-
mands on both sides of such an equation have to be of the same dimension. All previously
derived equations fulfill this criterion. In the light of the dimension considerations, every
quantity in the equations is written as a dimensionless factor q∗ multiplied with the neces-
sary reference value qr(Lr, ρr, vr,Tr). Subsequently, the equation is divided by the product

12The reference temperature in the Eckert number frequently represents a characteristic temperature difference
of the flow, Tr = ∆T

13The flow around a sphere is a simple example to elucidate this: while some authors define the length Lr to be
the diameter of the sphere, others prefer the radius. Both choices are valid, but the resulting Reynolds numbers
differ by a factor of two.
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L M T W

ρ density -3 1 0 0
vı̄ velocity components (ı̄ = 1, . . . , d) 1 0 -1 0
λ dilatational viscosity -1 1 -1 0
η dynamic viscosity -1 1 -1 0
cp specific heat at constant pressure 2 0 -2 -1
cv specific heat at constant volume 2 0 -2 -1
T temperature 0 0 0 1
κ heat conductivity 1 1 -3 -1
p pressure -1 1 -2 0
e internal energy 2 0 -2 0
αp isobaric expansion coefficient 0 0 0 -1
βT isothermal compressibility 1 -1 2 0
R gas constant (ideal gas) 2 0 -2 -1
(a) Physically relevant variables and parameters for the considered problem and their dimension with
respect to the fundamental quantities.

L M T W

Lr 1 0 0 0
ρrL3

r 0 1 0 0
v−1

r Lr 0 0 1 0
Tr 0 0 0 1
λL−1

r ρ−1
r v−1

r 0 0 0 0
ηL−1

r ρ−1
r v−1

r 0 0 0 0
cpTrv−2

r 0 0 0 0
cvTrv−2

r 0 0 0 0
κL−1

r ρ−1
r v−3

r T 0 0 0 0
pρ−1

r v−2
r 0 0 0 0

ev−2
r 0 0 0 0

αpTr 0 0 0 0
βTρrv2

r 0 0 0 0
RTrv−2

r 0 0 0 0
(b) Units for the fundamental magnitudes have been chosen (top block of the table) and using these,
dimensionless variables result from the diagonalization of the table (middle and lower part). For the
quantities in the middle block additional reference values are chosen, leading to the introduction of
dimensionless constants.

Table 2.2: Dimensions of the physically relevant quantities with respect to the fundamental
quantities length L, massM, time T , and temperatureW. Based on the dimensional
formulae, dimensionless products are formed.
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quantity used in dimensionless form reference value
x x∗ Lr

ρ ρ∗ ρr

vı̄ vı̄∗ (ı̄ = 1, . . . , d) vr

T T ∗ Tr

λ λ′ λr′ = Re−1
λ ρrvrLr

η η′ ηr′ = Re−1
η ρrvrLr

cp c′p cpr′ = Ec−1v2
r T−1

r
cv c′v cvr′ = γ−1Ec−1v2

r T−1
r

κ κ′ κr′ = Re−1
η Ec−1 Pr−1 ρrLrv3

r T−1
r

p p∗ pr = ρrv2
r

e e∗ er = v2
r

αp αp
∗ αpr = T−1

r
βT βT

∗ βT r = ρ−1
r v−2

r
R R∗ Rr = v2

r T−1
r

s s∗ sr = v2
r T−1

r
V1 V1

∗ V1r = v2
r T−1

r
V1+ı̄ V1+ı̄

∗ (ı̄ = 1, . . . , d) V(1+ı̄)r = vrT−1
r

V2+d V2+d
∗ V(2+d)r = T−1

r

Table 2.3: Dimensionless variables used together with the reference values they are based
on. All reference values with an index r are based on the four quantities Lr, ρr, vr,Tr.
Reference values that introduce additional scales are given the index r′. To retain the
distinction for the dimensionless quantities, they are denoted by a superscript ∗ or ′,
depending on the type of their reference value. In the lowest part of the table, also the
dimensionless form and reference values for entropy variables are listed.
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of powers of the units according to the dimension of the formula. Where appropriate, the
dimensionless numbers (2.48)–(2.52) are inserted.

2.10.1 Non-dimensionalization of the conservation equations

The non-dimensionalization of the conservation equations is straightforward; for example
the energy equation (2.14c), multiplied by Lr/(ρrv3

r ) yields

∂

∂t∗
[ρ∗ (e∗ + k∗ )] + ∇∗ · [(ρ∗ (e∗ + k∗ ) + p∗ )v∗ ]

=∇∗ ·

[{(
λ′

λr′

ρrvrLr
−

2
3
η′

ηr′

ρrvrLr

)
(∇∗ · v∗ )�

+ η′
ηr′

ρrvrLr
(∇∗v∗ + (∇∗v∗ )ᵀ)

}
· v∗

]
+ ∇∗ ·

(
κ′
κr′Tr

ρrv3
r Lr
∇∗T ∗

)
+

frLr

v2
r

f ∗ · v∗ ,

and by introducing the dimensionless numbers, the right hand side takes the form

=∇∗ ·

[{(
λ′

Reλ
−

2
3
η′

Reη

)
(∇∗ · v∗ )�

+
η′

Reη
(∇∗v∗ + (∇∗v∗ )ᵀ)

}
· v∗

]
+ ∇∗ ·

(
κ′

Reη Ec Pr
∇∗T ∗

)
+

frL
v2

r
f ∗ · v∗ ,

(2.53)

which is identical to the original dimensional equation with all variables replaced by
their dimensionless version and—where (·)′-quantities have been used—the dimensionless
numbers (2.48)–(2.52) premultiplied appropriately to the different terms.

2.10.2 Non-dimensionalization of the equations of state of specific fluid models

As an example of the non-dimensionalization of equations of state, those for the ideal gas
will be treated here. An ideal gas is described by the equations of state (2.30a) and (2.30b).
The state (p0, ρ0,T0) is assumed to fulfill Eq. (2.30b) and for simplicity the (arbitrary)
integration constant in the energy EOS is set to e0 = cvT0, so that e = cvT . The non-
dimensionalization proceeds by dividing by the appropriate reference quantities as given
by Table 2.3 to obtain

e∗ =
1
γEc

T ∗ , (2.54a)

p∗ = ρ∗ R∗ T ∗ , (2.54b)

where R∗ = R/Rr = (γ − 1)/(γEc) since cpr′ = cp = const, and cv accordingly.
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For the transformation to other variable sets, one also needs an expression for the entropy,
which is given by Eq. (2.31). To highlight a particular point in the non-dimensionalization,
the cited relation for s(α,T ) is replaced by s(p, ρ), which is given by

s(p, ρ) = s0 +
R

γ − 1
log

(
p
p0

)
−

γR
γ − 1

log
(
ρ

ρ0

)
. (2.55)

First of all, the constant s0 is chosen such that s(p0,T0) = 0. As the base state quantities p0

and ρ0 still occur in (2.55), it is time to specify how the base state relates to the reference
state. Two thermodynamic quantities are included in the set of reference quantities used for
the non-dimensionalization, namely ρr and Tr. For simplicity we set ρ0 = ρr and T0 = Tr.
The equation of state (2.30b) has to be fulfilled for the base state, hence p0 = ρ0 R T0 =

ρr RrR∗ Tr. On the other hand, the reference quantities have to fulfill pr = ρr Rr Tr, so
that the base pressure is p0 = pr R∗ . Consequently, the non-dimensionalized relation for
entropy in terms of pressure and density is

s∗ =
R∗

γ − 1

[
log

(
p∗

R∗

)
− γ log ρ∗

]
= R∗ logα∗ +

1
γEc

log T ∗ . (2.56)

The Eckert number needs to be related to the frequently provided Mach number. For
an ideal gas this is achieved by inserting the expression for the velocity of sound from
Eq. (2.33) into the definition of the Mach number, M B vr/a. This leads to

Ec =
v2

r

cpr′Tr
= (γ − 1)M2 . (2.57)

The non-dimensionalization of the equations of state for other media proceeds analogously.

2.10.3 Non-dimensionalization of the quasi-linearized equations for entropy
variables

To non-dimensionalize the quasi-linear equations, the dimensions of the entropy variable
vector V , cf. Eq. (2.47), are considered and a dimensionless set V∗ is defined. First, let

Dr B diag(vr, (v2
r )ı̄, v3

r ) , (2.58)

where (v2
r )ı̄ denotes d entries of v2

r . The entropy variable vector can be factored in reference
and dimensionless values as follows,
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V =
1
T

(
µ −

1
2

v2
n, vı̄, −1

)ᵀ
(2.59)

= diag(v2
r T−1

r , (vrT−1
r )ı̄, T−1

r )
1

T ∗

(
µ∗ −

1
2

v∗
2

n̄ , v∗ı̄ , −1
)ᵀ

︸                          ︷︷                          ︸
V∗

(2.60)

=
v3

r

Tr
D−1

r V∗ . (2.61)

For the flux Jacobians the same procedure yields

AV
ı̄ =

ρrTr

v3
r

DrAV
ı̄
∗

Dr , ı̄ = 1, . . . , d . (2.62)

Remark 2.7 The symmetric pre- and post-multiplication with the same diagonal matrix Dr

ensures that the dimensionless flux Jacobian AV
i
∗ inherits the symmetry property of AV

i .
The same holds for the diffusive flux Jacobians, as long as they are symmetric. For example,
the diffusive flux matrix KV

11 for V-variables for the spatial dimension d = 3 results from
the dimensional version (cf. p. 144) as

KV
11 =

ρrLrTr

v3
r

Dr T ∗



0 0 0 0 0
λ′

Reλ
+ 4

3
η′

Reη
0 0

(
λ′

Reλ
+ 4

3
η′

Reη

)
v∗1

η′

Reη
0 η′

Reη
v∗2

η′

Reη
η′

Reη
v∗3

sym. 2η′

Reη
k∗ +

(
λ′

Reλ
+ 1

3
η′

Reη

)
v∗

2

1 +
κ′T ∗

ReηEc Pr

︸                                                                                     ︷︷                                                                                     ︸
=: KV

11
∗

Dr .

�

For the terms of the quasi-linear equation that means

AV
n̄ V,n̄ =

Trρr

v3
r

Dr AV
n̄
∗
Dr

v3
r

Tr
D−1

r
1
Lr

V∗,x∗n̄ (2.63)

=
ρr

Lr
Dr AV

n̄
∗
V∗,x∗n̄ (2.64)

(KV
m̄n̄V,n̄),m̄ =

(
ρrLrTr

v3
r

DrKV
m̄n̄
∗
Dr

v3
r

Tr
D−1

r
1
Lr

V∗,x∗n̄

)
,x∗n̄

1
Lr

(2.65)

=
ρr

Lr
Dr

(
KV

m̄n̄
∗
V∗,x∗n̄

)
,x∗m̄

. (2.66)
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2.11 Conclusions

Multiplication with the inverse of the common factor (ρr/Lr) Dr recovers the same func-
tional form as in Eq. (2.43). This result coincides with the one of Eq. (2.53), namely that
the dimensionless prognostic equations are identical to the dimensional ones except for
the scaling of different terms by (products of) the dimensionless numbers (2.48)–(2.51).14

Therefore, in the sequel no explicit distinction will be made between the equations and
variables in dimensional and dimensionless form.

2.11 Conclusions

The behavior of fluids has been modeled through application of physical conservation
statements for the macroscopic dynamic motion, and with equations of state for their
reaction to changes of the thermodynamical state. Through non-dimensionalization,
extraneous standards have been removed. All equations keep their functional form, usually
with weighting factors in the form of dimensionless constants for different terms. Thanks
to the coincident functional dependence, no difference needs to be made between the
dimensional and dimensionless forms. In the sequel, the non-dimensional equations are
standard, but the explicit notation with superscripts as in q∗ and q′ is omitted.

The mathematical model has been extended by generalizing the set of independent
variables. Different choices for the set of variables have been cited and special properties
emphasized. In particular, the applicability to both compressible and incompressible flows
provides a promising starting point regarding the first central question formulated in the
introduction. The generalized variable approach—and in particular entropy variables—will
be exploited in the sequel. The goal is to construct numerical methods that retain the
property of the fundamental equations and are applicable to fluids of different nature. This
will be the topic of Chapters 4 and 5. First, however, common definitions are given in the
following chapter.

14In short, the following replacements take place in the conservation equations: λ→ λ′/Reλ, η→ η′/Reη,
κ → κ′/(ReηEc Pr).
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Chapter 3

Mathematical formalization

Vaka vanha Väinämöinen näki tyrskyn työntelevän,
hyrskyn maalle hylkeävän, aallon rannallen ajavan
noita sampuen muruja, kirjokannen kappaleita.

Hän tuosta toki ihastui. Sanan virkkoi, noin nimesi:
"Tuost’ on siemenen sikiö, alku onnen ainiaisen,
tuosta kyntö, tuosta kylvö, tuosta kasvu kaikenlainen!"

Elias Lönnrot (1802–1884), Kalevala

3.1 Introduction

This chapter lays the foundation for the discussion of the least-squares and discontinuous
Galerkin finite element discretizations in Chapters 4 and 5, respectively. General definitions
for different mesh entities are given here and the corresponding notation is established.

3.2 Space-time geometry

A flow problem is considered in space and time, starting at time ts and ending at te. The
spatial domain of the flow problem may be time-dependent. The time dependence can
either be prescribed, e.g. moving solid boundaries, or itself be part of the solution process,
as in free-surface problems.

Let the physical space dimension of the problem be d. Adding the time-dependence,
E ⊂ �1+d is the open space-time domain of the problem. A point in the domain is
given by its position vector x. Whenever the vector character is irrelevant, the point
is denoted x and, depending on the context, it is represented by its coordinates with
respect to a Cartesian coordinate system as x = (x0, x1, . . . , xd) = (x0, x̄) = (t, x̄). As
introduced in Chapter 2, the overbar indicates extent over spatial dimensions, like the
spatial coordinates x̄ = (x1, . . . , xd), as opposed to the space-time position x.

The spatial flow domain at time t is Ω(t) B {x ∈ �1+d | (t, x̄) ∈ E}. The boundary
of the space-time domain, ∂E, can be decomposed into the spatial domain at the start
and end time, Ω(ts) and Ω(te), respectively, which are both subsets of hyperplanes in
�1+d, and the hypersurface spanned by the spatial domain boundary ∂Ω(t) and time,
Q B {x ∈ ∂E | ts < x0 < te}. See Figure 3.1 for examples with the spatial dimension d = 1.
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x̄

t

ts

te

E

(a) The time-dependent line segment Ω(t) ⊂ � for
t ∈ [ts; te] defines the space-time domain E ⊂ �2.

x̄

t

Ω(te)

Ω(ts)

Q

(b) The boundary ∂E of the space-time domain.

Figure 3.1: The space-time domain E and associated notation.

Domain discretization
To make the space-time domain E available to finite element methods, it has to be parti-
tioned by a suitable mesh. First, the considered time interval T B [ts; te] is subdivided
into Nt intervals Tn B [tn−1; tn], with ts = t0 < t1 < . . . < tNt = te. The space-time
domain E is divided by the hyperplanes Hn B {x ∈ �1+d | x0 = tn} into space-time
slabs En B {x ∈ E | x0 ∈ T

n}.
Starting with the space domain Ω(tn−1) at time tn−1, its evolution during Tn is given by a

time-dependent mapping

Φn
t : Ω(tn−1)→ Ω(t), t ∈ Tn ,

x̄ 7→ Φn
t (x̄) ,

which is assumed to be sufficiently smooth, orientation preserving and invertible. At
each time tn−1, a tessellation T̄ n−1,+ of the physical space domain Ω(tn−1) into Nn

el ele-
ments K̄n−1,+

e , e = 1, . . . ,Nn
el, is given. Each of these elements is related to a suitable

reference element ˆ̄Kn−1
e by the mapping Ḡn−1,+

e : ˆ̄Kn−1
e → K̄

n−1,+
e . The reference shapes

used for the considered dimensions d are listed in Table 3.1 on the next page.
By applying the mapping Φn

tn , the image of each element K̄n−1,+
e at time tn is found;

the image is denoted K̄n,−
e , and the set of all images of the elements in T̄ n−1,+ de-

fines the tessellation T̄ n,−, cf. Figure 3.2b on the facing page. The space-time ele-
ments Kn

e in slab En are defined by linear interpolation of K̄n−1,+
e and K̄n,−

e in time,
cf. Figure 3.2a. Finally, the set of all space-time elements in the n th slab constitutes the
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x̄

t

ts

te

E

Ω(te)

Ω(ts)

Kn−1
1 Kn−1

2
. . . En−1

h

Kn
1 Kn

2
. . . En

h

tn−2

tn−1

tn

Q

(a) Space-time domain and mesh.

K̄
n−1,−
1 K̄

n−1,−
2

K̄
n−1,+
1 K̄

n−1,+
2

T̄
n−1,−
h :

T̄
n−1,+
h :

(b) Space-tessellations at an inter-time
slab boundary.

Figure 3.2: Illustration of the notation for a mesh on a one-dimensional space domain
(here without mesh deformation and moving boundaries).

space-time tessellation T n = {Kn
e | e = 1 . . .Nn

el}, and the domain of the discretized time

slab is En
h B

⋃Nn
el

e=1K
n
e , with h a representative measure of the minimal cell diameter. The

discrete space-time domain boundary Qh is defined analogously to Q and its restriction to
the n th slab is Qn

h.

Remark 3.1 In the above framework, two different space tessellations may exist on the
sides of each hyperplaneHn, allowing to re-mesh in case the physical space tessellation
does not fulfill the quality requirements after applying the mapping Φn

tn . �

Like the space reference element ˆ̄Kn−1
e for each element K̄n−1,+

e , the space-time elementKn
e

has a space-time reference element K̂n
e . The space-time reference elements are defined by

extending the reference shapes of Table 3.1 with a time dimension: K̂n
e = T̂ ×

ˆ̄Kn−1
e with

Table 3.1: The reference shapes
used for the discretization in physi-
cal space with dimension d; see also
Chapter 6 and Appendix B.

d shape # of faces # of nodes
1 line 2 –
2 triangle 3 3

square 4 4
3 tetrahedron 4 4

pyramid 5 5
triangular prism 5 6
cube 6 8
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the reference time interval T̂ B [−1; 1]. The mapping from reference time x̂0 to physical
time t is defined as

GT
n

T̂
: T̂→ [tn−1; tn] ,

x̂0 7→ t = tn+tn−1
2 + tn−tn−1

2 x̂0 .

This also exemplifies the general notation GB
A for mappings from A to B. For the mapping

from the space-time reference element to physical space-time element,

GK
n
e

K̂n
e

: K̂n
e → K

n
e ,

x̂ 7→
(
GT

n

T̂
, 1

2 (1 − x̂0) Ḡn−1,+
e ( ˆ̄x) + 1

2 (1 + x̂0) Ḡn,−
e ( ˆ̄x)

)
,

the abbreviation Gn
e is frequently used. Excluding the time coordinate from the element

mapping yields the (time-dependent) space mapping Ḡn
e .

Remark 3.2 The mapping between reference time x̂0 and physical time x0 is indepen-
dent of space but the mapping of the space coordinates is time-dependent (in deforming
meshes). �

Remark 3.3 It is also possible to consider subtimestepping; hereby the time interval is
split by some elements Kn

e in such a way that at least one of the intersections Kn
e ∩H

n−1

and Kn
e ∩H

n is empty. This case could be covered by the element enumeration per slab
rather than by the slab superscript n. However, this technique is not used here. Therefore
the mapping from reference to physical time, GT

n

T̂
, is the same for all elements, thus

simplifying the notation. �

Remark 3.4 Elements may be added or removed from the space discretization within
one time interval by setting the space-volume at the start or end of the time slab to
zero. To realize this, moving element boundaries and an arbitrary Lagrangian–Eulerian
formulation are necessary (van der Vegt and van der Ven, 2002b). The element mapping Φn

t
is not invertible at the concerned time level, but in practice that is immaterial. �

3.3 Faces

Each space reference element ˆ̄Kn
e listed in Table 3.1 is characterized by its geometry as

given by the number of nodes, their positions and the connectivity in objects of codimension
greater or equal to one, see Appendix B. In the following, the entities of codimension one
(with regard to the total space or space-time dimension) are called the element faces F̄n−1,+

e, j

of the space element K̄n−1,+
e . The element face F̄n−1,+

e, j is extended in the same way
into space-time as the elements: based on its image under the mapping Φn

tn , the linear
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3.3 Faces

interpolation between the two time levels defines Fn
e, j. The space-time element Kn

e is then
bounded by

∂Kn
e = K̄

n−1,+
e ∪ K̄n,−

e ∪
⋃

j

Fn
e, j .

For the discontinuous Galerkin method developed in Chapter 5 it is beneficial to see
a face not as induced by an element but as independent constituent of the mesh. The
following definition makes that possible and distinguishes several kinds of faces based on
their function in the space-time slab En.

Definition 3.1 (Faces): The element face Fn
e, j is tagged as

• an internal face Si,n
{e,e′}, if ∃ e, e′ ∈ {1, . . . ,Nn

el}, e , e′, j, j′ : Fn
e, j = Fn

e′, j′ ,

• a (past) time face Sp,n
e,e′ , if ∃ e ∈ {1, . . . ,Nn

el}, e′ ∈ {1, . . . ,Nn−1
el }, j, j′ : Fn

e, j = Fn−1
e′, j′ ,

• a (future) time face Sf,n
e,e′ , if ∃ e ∈ {1, . . . ,Nn

el}, e
′ ∈ {1, . . . ,Nn+1

el }, j, j′ : Fn
e, j = Fn+1

e′, j′ ,

• a boundary face Sb,n
e, j otherwise.

All boundary faces of the space-time slab En
h are subsumed in the set F b,n and the internal

faces in the set F i,n. Finally, all faces of these two types are included in the set F n B

F i,n ∪ F b,n. The past and future time faces of the slab are included in F p,n and F f,n,
respectively, and F t,n B F p,n ∪ F f,n. �

Remark 3.5 1. According to the previous definitions, the space-time element faces
in the hyperplanes H0 and HNt , i.e., at the start and end time, respectively, are
boundary faces. But for practical matters they do not require special treatment,
rather the same (upwind) flux is applied as on time faces, cf. Section 5.2.5.

2. The set notation for the subscript of an internal face Si,n
{e,e′} indicates the uniqueness

of the face, thus an interchange of the two indices refers to the same entity.

3. For the definition of the faces it is assumed that all elements are convex, which can
always be guaranteed by subdivision. �

Definition 3.2 (Traces): For a function w defined on the space-time domain E, the traces
in a point x at the boundary ∂Kn

e of the element Kn
e are defined as

w±
Kn

e
B lim

ε↓0
w(x ± εnKn

e ) .

As the normal vector nKn
e is outward with respect to the element Kn

e , the superscript ‘+’
defines the exterior trace and ‘−’ the interior trace. If x is located on the boundary ∂E of
the space-time domain E then only the interior trace w−

Kn
e

exists. �
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3.4 Notational conventions

The summation convention is implied on repeated indices; where possible, summation
indices use the letters m, . . . , s. The letter n frequently does not indicate a summation
but rather serves as the time slab index, or, occasionally, denotes the components ni of
a normal vector n. The indices i, j, k are usually free indices, chosen within a suitable
range, typically the space or space-time dimension. All dimensional indices come in two
versions: unaccented (i) or with overbar (ı̄). While the unaccented version concerns the
time and space dimensions, i = 0, . . . , d, the overbar version covers space dimensions
only, ı̄ = 1, . . . , d, see also Section 2.5. Indices in sans-serif font are textual rather than
mathematical entities. Mathematical subscripts with comma notation indicate partial
differentiation, e.g. U,t = ∂U/∂t, U,i = ∂U/∂xi. When indexing components of a state data
vector, e.g. U or V , the index is marked with a tilde, i.e., ı̃ = 1, . . . , 2 + d.
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Chapter 4

A stabilized Galerkin least-squares finite element
method for the Navier–Stokes equations

Le temps use l’erreur et polit la verité.

François Gaston de Lévis (1719–1787),
Maximes, préceptes et réflexions

4.1 Introduction

Finite element methods furnish a procedure to compute approximations of the solutions of
(partial) differential equations. The Galerkin finite element procedure—derive a weak form
for a given PDE, discretize the function spaces with sufficiently smooth basis functions and
solve the resulting finite-dimensional problem—was first successfully applied to elliptic
equations. It soon became apparent that using the method for other types of PDEs leads to
problems. The first of these problems is related to advection-dominated flow, for which the
Galerkin FEM lacks stability and spurious oscillations can degrade the solution, see, e.g.,
(Franca et al., 1992). Various methods with an ‘upwind’ component have been developed
to overcome the stability problem. In particular the Petrov–Galerkin method, which uses
different basis functions for the test and trial space, has been used to stabilize finite element
discretizations. More recently, the streamline upwind Petrov–Galerkin (SUPG) method has
been devised. It introduces stabilization only in the streamline direction, which improves
the accuracy of the method.

Avoiding upwinding and artificial diffusion-related ideas, the Galerkin least-squares
method constitutes a different approach to obtain a stable numerical method. By adding a
least-squares term to the standard Galerkin formulation this method solves the stability
problem without reducing the order of accuracy of the method, provided a suitably defined
least-squares operator is used. Interestingly, the least-squares term stabilizes the Galerkin
method not only with respect to the advective effect. It also defeats the problem of
pressure-field oscillations which occurs in the treatment of the incompressible Navier–
Stokes equations. That means that the Ladyzhenskaya–Babuška–Brezzi (LBB) condition
(also called the inf-sup-condition) is satisfied by the Galerkin least-squares ansatz without
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Chapter 4 Stabilized Galerkin LS FEM for the Navier–Stokes equations

resorting to mixed methods, i.e., choosing different approximation spaces for the different
solution components.

When based on a suitable formulation of the Navier–Stokes equations, the Galerkin
least-squares FEM is applicable to both compressible and incompressible flow. Therefore,
the generalized variable approach (cf. Chapter 2)—in which the conservative base set may
be replaced by other sets, like entropy variables—has been at the heart of a number of finite
element discretizations for the Euler and Navier–Stokes equations (Hughes et al., 1986;
Shakib et al., 1991; Barth, 1999). An important observation is that for entropy variables
the Navier–Stokes equations have a well-defined incompressible limit. Provided all
components of the numerical method maintain this property, stable and efficient algorithms
can be designed that apply to both compressible and incompressible flow. This route was
taken by Hauke and Hughes (1998), who give numerical examples for both cases computed
with a Galerkin least-squares FEM. The line of thought followed here aims to support the
general applicability of the entropy variable formulation by designing a single stabilization
operator that applies to both kinds of flow. For that matter, the results presented in this
chapter are a continuation of the research of Polner et al. (2006). To complete their
work, which focussed on the application of a newly designed stabilization operator to
incompressible flows using pressure primitive variables, Polner, Pesch, and van der Vegt
(2007) have generalized the definition of the stabilization operator and implemented the
method successfully for entropy variables and compressible fluids. The results demonstrate
that the new stabilization operator, whose definition includes the compressibility properties
of the fluid, applies to both compressible and incompressible flows and does not negatively
affect the accuracy of the finite element discretization.

This chapter presents a continuous finite element formulation for the Navier–Stokes
equations using entropy variables (Hauke and Hughes, 1998), the new stabilization operator
in the Galerkin least-squares formulation, and numerical results for compressible flow.
The latter are contributions to (Polner et al., 2007), where the theoretical derivation of
the stabilization operator can be found. In Section 4.2 the function spaces for the FE
discretization are identified. For the purpose of this chapter, these spaces are subsets of the
Sobolev space H1(En

h), which requires that functions and their weak derivative are square
integrable. Section 4.2 also contains the weak form of the Navier–Stokes equations. The
evaluation of the integrals that occur in the weak form is detailed, as is their linearization,
which is necessary for the solution of the nonlinear system of equations with a Newton
method. Details about the (numerical) boundary conditions are discussed in Section 4.3,
before the main subject of (Polner et al., 2007), the stabilization matrix for compressible
and incompressible fluids, is stated in Section 4.4. Section 4.5 presents the solutions for
several test problems as evidence that the stabilization operator fulfills the requirements.
Section 4.6 contains an evaluation of the numerical method presented in this chapter and
conclusions.
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4.2 Weak formulation and discretization

4.2 Weak formulation and discretization

The starting point for the finite element discretization of the PDE system at hand is
the weak formulation, which is obtained by multiplying the equations with arbitrary test
functions and integrating over the domain. This step is, however, only meaningful when the
function spaces containing the trial and test functions are properly specified. While in this
chapter the space discretization uses continuous basis functions, the discretization in time
is discontinuous, using either constant or linear-in-time functions. The discontinuous basis
functions in time allow remeshing between timesteps, so that—together with the natural
arbitrary Lagrangian/Eulerian (ALE) formulation of the equations—moving meshes can
be treated by the method. This possibility is, however, not exploited by the implementation
and test cases presented here, hence the ALE form of the equations, which can be found in
(Polner, 2005), is not derived. The time discretization is implicit through the (approximate)
integration over the space-time slabs.

4.2.1 Finite element spaces

The function spaces used to discretize a weak formulation necessarily have to be finite-
dimensional to allow a numerical treatment. Finite-dimensionality is achieved by allowing
only functions that are piecewise—i.e. per element in the tessellation T—of a certain
polynomial degree. In this chapter, the trial and test function spaces for the space-time
slab En

h,Wn,(pt,ps)
h and Yn,(pt,ps)

h , respectively, are defined based on the tessellation of the
n th slab, T n, so that they contain globally C0-continuous functions, which are elements of
the space of tensor-product polynomials P(pt,ps)(K̂n

e ) of degree pt in time and ps in space
on the reference element of each element Kn

e . The spatial degree is fixed to ps = 1 for the
numerical examples given in this chapter. This restriction is, however, not exploited in the
derivation of the discretization, so that higher order basis functions may be used with the
same formulae. Further, all expansions are either constant or linear in time, viz. pt ∈ {0, 1}.
For the constant in time approximation, simplifications regarding the time integral can be
applied, as will be pointed out in due course. The trial and test function spaces are given
by

W
n,(pt,ps)
h B {V ∈ (H1(En

h))2+d | V
Kn

e
◦ Gn

e ∈ (P(pt,ps)(K̂n
e ))2+d ∀Kn

e ∈ T
n;

B1(V) = 0 on Qn
h} ,

(4.1)

Y
n,(pt,ps)
h B {W ∈ (H1(En

h))2+d | W
Kn

e
◦ Gn

e ∈ (P(pt,ps)(K̂n
e ))2+d ∀Kn

e ∈ T
n;

B2(W) = 0 on Qn
h} .

(4.2)

The boundary operators B1 and B2 depend on the type and value of the boundary conditions
on Qn

h, which have to be chosen appropriately for the given problem and set of variables,
cf. Sections 4.3 and 4.5.
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It should be noted that although the set of unknowns is called V here, all derivations
in this chapter remain the same if a different set of variables, e.g. pressure primitive
variables Y , is used.

4.2.2 Weak formulation

Integrating the set of conservation equations (2.14) over the discretized space-time slab En
h

and applying the Gauß theorem results in flux terms on the space and time boundary of the
slab. Adding a least-squares term for stability, the weak form is stated as:
Find V ∈ Wn,(pt,ps)

h such that for all W ∈ Yn,(pt,ps)
h holds∫

En
h

(
−W,r · Fe

r (V) +W,r̄ · (KV
r̄ s̄V,s̄)

)
dE + Bls(W,V) + Bbc(W,V)

+

∫
Ω(tn)

W(t−n ) · Fe
0 (V(t−n )) dΩ −

∫
Ω(tn−1)

W(t+n−1) · Fe
0 (V(t−n−1)) dΩ = 0 .

(4.3)

The terms in the bracketed space-time slab integral in Eq. (4.3) are the Euler and diffusive
fluxes. The original (i.e., not the quasi-linear) form of the equations is used, except in
the least-squares term Bls, which will be specified later. The boundary conditions are
subsumed in the operator Bbc, and weak continuity in time is enforced by the integrals over
the time boundaries with the previous and future time slab, Ω(tn−1) and Ω(tn), respectively.

4.2.3 Construction of the basis functions

The test functions W and the trial functions V are discretely expanded using (i) continuous
nodal basis functions in space, ψn,g : Ω(t)→ �, and (ii) discontinuous basis functions in
time, λn, j : [ts; te]→ �:

(i) The spatial basis functions are associated with the nodes of the space tessellation T̄ n,
that is, ψn,g attains the value one at the node with index g and zero in all other nodes.
In this way the support is minimal under the requirement of global continuity.
On the other hand, for computational reasons, an element-based view is preferable
and the global basis functions are expressed in terms of functions ψ̂i defined on a
reference element. The local basis functions are defined in terms of the reference
space coordinates x̂i on the reference element K̂n

e and transformed to the physical
space element Kn

e by the mapping Gn
e . The described requirements on the global

basis functions correspond to Lagrange elements, see, e.g., (Brenner and Scott, 2002).
Each global basis function can be represented as a sum of local basis functions from
different elements: The global basis function ψn,g is the sum of the local basis
functions whose support is one of the elements that contain the node g and which
are nonzero in g.
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(ii) Throughout this chapter, the expansion in reference time x̂0 ∈ T̂ is either constant
or linear, hence the number of time basis functions per time slab is nt = 1 or nt = 2,
respectively, for all elements. The reference time basis function is λ̂1(x̂0) = 1 for the
constant in time case and λ̂1(x̂0) = 1

2 (1 − x̂0) and λ̂2(x̂0) = 1
2 (1 + x̂0) for the linear in

time case, so that the time basis functions in the actual space-time slab are given by

λn,1 =

1 if tn−1 < t < tn ,

0 otherwise ,
(4.4)

for constant in time, and

λn,1 =

 tn−t
tn−tn−1

if tn−1 < t < tn ,

0 otherwise ,
λn,2(t) =

 t−tn−1
tn−tn−1

if tn−1 < t < tn ,

0 otherwise ,
(4.5)

for linear in time.

Expansions in terms of element-local basis functions

The degrees of freedom of the unknown V are the expansion coefficients of the solution
with respect to the chosen basis for the discrete function space. On a space-time reference
element K̂n

e , the variable V is expanded as

Vn
e (x̂) =

ns∑
i=1

nt∑
j=1

Vn, j
i,e λ̂

j(x̂0) ψ̂i( ˆ̄x) . (4.6)

with the coefficient vectors Vn, j
i,e ∈ �

2+d. However, not all the local expansion coefficients
are independent since the actual degrees of freedom are the coefficients with respect to
the underlying global basis functions; hence the assembly procedure has to map from
local degrees of freedom to global ones, which are denoted Vn, j

g . Like nt in the temporal
expansion, the number of spatial basis functions, ns, is assumed fixed for all elements.

Just as the original equations are nonlinear, so is the discrete system with respect to
the degrees of freedom. Therefore, a linearization is carried out to apply a Newton-like
solution strategy to the discrete problem. For the linearization of the global system arising
from the discretization of the weak form (4.3) several differential relations involving
element expansions are necessary. The differentiation of (4.6) with respect to an expansion
coefficient Vn′, j′

i′,e′ yields

∂Vn
e

∂Vn′, j′
i′,e′
= δee′δnn′ λ̂

j′ ψ̂i′ , i′ ∈ {1, . . . , ns}, j′ ∈ {1, . . . , nt}, e, e′ ∈ {1, . . . ,Nn
el} . (4.7)
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Differentiation of (4.6) with respect to the reference time yields

∂Vn
e

∂x̂0
=

ns∑
i=1

nt∑
j=1

Vn, j
i,e
∂λ̂ j

∂x̂0
ψ̂i , (4.8)

and the spatial derivative is similar except that the differentiation acts only on ψ̂i. These
relations will be used in the next section where the integrals of the weak form are evaluated
for trial and test functions from their respective discrete spaces,Wn,(pt,ps)

h and Yn,(pt,ps)
h .

4.2.4 Evaluation of weak form integrals, time integration, linearization

In this section, the integrals in the weak form (4.3) are evaluated further, based on the
expansion (4.6) of the trial function, but still without specifying the test function. In the
following, the symbol Vn

e (ζ) abbreviates Vn
e (x̂0 = ζ, ˆ̄x) as a function of the reference space

position at the given reference time x̂0 = ζ. The evaluation of the integral over the time
coordinate is done with the trapezoidal rule (TR), which yields a second order accurate
approximation by averaging the values at the start and end of the time slab. If the expansion
in time is merely constant, then a single evaluation of the integrand suffices and halves
the computational cost of the integration. This case will not be considered separately
below. Integration on space elements and faces is carried out with third order numerical
quadrature rules, cf. Appendix B.

Euler flux terms
The first integral argument in the weak form (4.3) stems from the Euler fluxes and the time
derivative of the conserved variables (here written as a time flux Fe

0 (U) = U),

A
n(V,W) B −

∫
En

h

W,r · Fe
r dE (4.9)

= −

Nn
el∑

e=1

∫
K̂n

e

(
2
∆tn

∂W
∂x̂0

Fe
0 (V(x̂)) +

∂x̂s̄

∂xr̄

∂W
∂x̂s̄

Fe
r̄ (V(x̂))

) ∣∣∣Jacx̂Gn
e

∣∣∣ dK̂ (4.10)

=
∆tn
2

Nn
el∑

e=1

∫
T̂

An
e(V,W, ζ) dζ (4.11)

TR
≈
∆tn
2

Nn
el∑

e=1

2∑
j=1

An, j
e (V,W) , (4.12)

with the space integral An
e on the element Kn

e defined as
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4.2 Weak formulation and discretization

An
e(V,W, ζ) B −

∫
ˆ̄Kn

e

(
2
∆tn

∂W
∂x̂0

(ζ) Fe
0 (V(ζ))

+
∂x̂s̄

∂xr̄

∂W
∂x̂s̄

(ζ) Fe
r̄ (V(ζ))

) ∣∣∣Jac ˆ̄xḠ
n
e(ζ)

∣∣∣ d ˆ̄K ,

(4.13)

and the shorthand notation An, j
e (V,W) B An

e(V,W, x̂ j
0) for the integrals at the time interval

end values x̂1
0 = −1 and x̂2

0 = 1. The mapping Ḡn
e(ζ) maps from the space reference element

ˆ̄Kn
e to the physical space element at time t, K̄n

e , where t = Gn
0(ζ). For the constant in time

expansion, the summation argument in (4.12) yields the same result for both values of j.
The Jacobian with respect to the local expansion coefficients is

∂An, j
e

∂Vn′, j′
i′,e′
= −δee′δnn′

∫
ˆ̄Kn

e

(
2
∆tn

∂W
∂x̂0

(x̂ j
0) AV

0 (Vn, j
e )

+
∂x̂s̄

∂xr̄

∂W
∂x̂s̄

(x̂ j
0) AV

r̄ (Vn, j
e )

)
λ̂ j′(x̂ j

0) ψ̂i′

∣∣∣∣Jac ˆ̄xḠ
n
e(x̂ j

0)
∣∣∣∣ d ˆ̄K .

(4.14)

Here, the evaluation of the trial function at the time slab end j is denoted Vn, j
e B Vn

e (x̂ j
0).

Obviously ∂An, j
e /∂Vn′, j′

i′,e′ only gives a contribution when n = n′ and e = e′, i.e., when the
degree of freedom with respect to which the expression is linearized is associated with the
element Kn

e .

Viscous term

The weak formulation (4.3) exploits that the diffusive fluxes are homogeneous functions
of order one in the conserved variables, so that—transformed to entropy variables—the
related term is

B
n(V,W) B

∫
En

h

W,r̄ · (KV
r̄ s̄V,s̄) dE (4.15)

=

Nn
el∑

e=1

∫
K̂n

e

∂x̂p̄

∂xr̄

∂W
∂x̂p̄
·

(
KV

r̄ s̄
∂x̂q̄

∂xs̄

∂V
∂x̂q̄

) ∣∣∣Jacx̂Gn
e

∣∣∣ dK̂ (4.16)

=
∆tn
2

Nn
el∑

e=1

∫
T̂

Bn
e(V,W, ζ) dζ (4.17)

TR
≈
∆tn
2

Nn
el∑

e=1

2∑
j=1

Bn, j
e (V,W) , (4.18)
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with the space integral Bn
e defined as (omitting the indication for evaluation at reference

time ζ in favor of shorter notation)

Bn
e(V,W, ζ) B

∫
ˆ̄Kn

e

∂x̂p̄

∂xr̄

∂W
∂x̂p̄
·

(
KV

r̄ s̄
∂x̂q̄

∂xs̄

∂V
∂x̂q̄

) ∣∣∣Jac ˆ̄xḠ
n
e(ζ)

∣∣∣ d ˆ̄K , (4.19)

and the notation for its evaluation at time level j, Bn, j
e (V,W) B Bn

e(V,W, x̂ j
0). For the

Jacobian of this term, the dependence of the matrices KV
ı̄ ̄ on the local state V is neglected,

so that the linearization with respect to the expansion coefficients can be expressed as

∂Bn, j
e

∂Vn′, j′
i′,e′
= δee′δnn′

∫
ˆ̄Kn

e

∂x̂p̄

∂xr̄

∂W
∂x̂ p̄
·

(
KV

r̄ s̄
∂x̂q̄

∂xs̄
λ̂ j′(x̂ j

0)
∂ψ̂i′

∂x̂q̄

) ∣∣∣∣Jac ˆ̄xḠ
n
e(x̂ j

0)
∣∣∣∣ d ˆ̄K . (4.20)

Least-squares term

Using the quasi-linear form of the Navier–Stokes operator LV ,

LV B AV
r
∂

∂xr
−

∂

∂xr̄

(
KV

r̄s̄
∂

∂xs̄

)
, (4.21)

which is symmetric for entropy variables V , and the stabilization operator τV (see Sec-
tion 4.4), the least-squares term is defined as

C
n(V,W) ≡ Bls(V,W) B

∫
En

h

LVW · τV LVV dE (4.22)

=

Nn
el∑

e=1

∫
K̂n

e

LVW · τV LVV
∣∣∣Jacx̂Gn

e

∣∣∣ dK̂ (4.23)

=
∆tn
2

Nn
el∑

e=1

∫
T̂

Cn
e (V,W, ζ) dζ (4.24)

TR
≈
∆tn
2

Nn
el∑

e=1

2∑
j=1

Cn, j
e (V,W) . (4.25)

Here, as before, the integration is split into the time integral, which has been approximated
with the trapezoidal rule above, and the space integral of the integrand, Cn

e ,
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4.2 Weak formulation and discretization

Cn
e (V,W, ζ) B

∫
ˆ̄Kn

e

(
2
∆tn

AV
0
∂W
∂x̂0
+ AV

r̄
∂x̂ p̄

∂xr̄

∂W
∂x̂p̄
+
∂x̂p̄

∂xr̄

∂

∂x̂p̄

(
KV

r̄s̄
∂x̂q̄

∂xs̄

∂W
∂x̂q̄

))

· τV

(
2
∆tn

AV
0
∂V
∂x̂0
+ AV

r̄′
∂x̂p̄′

∂xr̄′

∂V
∂x̂p̄′

+
∂x̂p̄′

∂xr̄′

∂

∂x̂p̄′

(
KV

r̄′ s̄′
∂x̂q̄′

∂xs̄′

∂V
∂x̂q̄′

))
∣∣∣Jac ˆ̄xḠ

n
e(ζ)

∣∣∣ d ˆ̄K .

(4.26)

The matrices AV
i and KV

ı̄ ̄ depend on the state V and thus implicitly also on the space
coordinates. For practical reasons, however, for this term the KV

ı̄ ̄-matrices are assumed
constant per element. The Jacobian is

∂Cn, j
e

∂Vn′, j′
i′,e′
= δee′δnn′

∫
K̄n

e

(
2
∆tn

AV
0
∂W
∂x̂0
+ AV

r̄
∂x̂ p̄

∂xr̄

∂W
∂x̂p̄
+
∂x̂p̄

∂xr̄

∂

∂x̂p̄

(
KV

r̄s̄
∂x̂q̄

∂xs̄

∂W
∂x̂q̄

))

· τV

( 2
∆tn

AV
0
∂λ̂ j′

∂x̂0
(x̂ j

0) ψ̂i′ + AV
r̄′ λ̂

j′(x̂ j
0)
∂x̂ p̄′

∂xr̄′

∂ψ̂i′

∂x̂p̄′

+ λ̂ j′ ∂x̂p̄′

∂xr̄′

∂

∂x̂p̄′

(
KV

r̄′ s̄′
∂x̂q̄′

∂xs̄′

∂ψ̂i′

∂x̂q̄′

)
︸                    ︷︷                    ︸

∗

) ∣∣∣∣Jac ˆ̄xḠ
n
e(x̂ j

0)
∣∣∣∣ dΩ̂ .

(4.27)

Shakib et al. (1991) advise to discard the underlined term due to a destabilizing effect,1

see also (Polner, 2005). Further, the term marked with ∗ is approximated as

∂

∂x̂ p̄′

(
KV

r̄′ s̄′
∂x̂q̄′

∂xs̄′

∂ψ̂i′

∂x̂q̄′

)
≈ KV

r̄′ s̄′
∂x̂q̄′

∂xs̄′

∂2ψ̂i′

∂x̂ p̄′∂x̂q̄′
. (4.28)

Boundary conditions

When applying the Gauß theorem, integrals over the discrete space-time boundary Qn
h of

the n th slab enter the weak formulation:

D
n(V,W) ≡ Bbc(V,W) (4.29)

=

Nn
el∑

e=1

∑
k

Fn
e,k∩Q

n
h,∅

∫
Fn

e,k

(
(W · Fe

r (V)) nr −W · (KV
rs̄V,s̄) nr

)
dF (4.30)

1The term also yields a contribution even if j , j′, so that when computing the Jacobian, the sum over j would
have to be carried out.
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=

Nn
el∑

e=1

∑
k

Fn
e,k∩Q

n
h,∅

∫
T̂

∫
ˆ̄Fn

e,k

{
(W · Fe

r (V(x̂))) nr −W · KV
rs̄
∂x̂p̄

∂xs̄

∂V
∂x̂ p̄

nr

}
∣∣∣∣∣∣Jac ˆ̃xG

F̄n
e,k

ˆ̄Fn
e,k

∣∣∣∣∣∣ ∣∣∣Jacx̂0G
Tn

T̂

∣∣∣︸     ︷︷     ︸
∆tn/2

d ˆ̄F dζ

(4.31)

TR
≈
∆tn
2

Nn
el∑

e=1

2∑
j=1

Dn, j
e (V,W) , (4.32)

where the coordinates of the space reference face were denoted ˆ̃x.

Remark 4.1 For moving meshes, the time component of the normal vector on the space-
time boundary, n0, is nonzero, but the diffusive flux in the time direction vanishes, which is
reflected by KV

0ı̄ = 0. �

The summation argument is given by the integral Dn, j
e (W) B Dn

e(V,W, x̂ j
0) with

Dn
e(V,W, ζ) B

∑
k

Fn
e,k∩Q

n
h,∅

∫
ˆ̄Fn

e,k

{
(W · Fe

r (V(x̂))) nr

−W · KV
rs̄
∂x̂p̄

∂xs̄

∂V
∂x̂ p̄

nr

} ∣∣∣∣∣∣Jac ˆ̃xG
F̄n

e,k

ˆ̄Fn
e,k

∣∣∣∣∣∣ d ˆ̄F .

(4.33)

The linearization of this term is

∂Dn, j
e

∂Vn′, j′
i′,e′
= δee′δnn′

∑
k

Fn
e,k∩Q

n
h,∅

∫
ˆ̄Fn

e,k

{
(W · AV

r (V)) nr λ̂
j′(x̂ j

0) ψ̂i′ ( ˆ̄x)

−W · KV
rs̄
∂x̂p̄

∂xs̄

∂ψ̂i′

∂x̂p̄
λ̂ j′(x̂ j

0) nr

} ∣∣∣∣∣∣Jac ˆ̃xG
F̄n

e,k

ˆ̄Fn
e,k

∣∣∣∣∣∣ d ˆ̄F .

(4.34)

The basis function ψ̂i has to be evaluated on the appropriate (reference element) boundary
over which the integral is taken.

Time face terms
Across the time slab boundaries the time basis functions are discontinuous, but continuity
of the solution is enforced in a weak sense by the integrals on the time faces:

E
n(V,W) B

∫
Ω(tn)

W(t−n , x̄) · Fe
0 (V(t−n , x̄)) dΩ −

∫
Ω(tn−1)

W(t+n−1, x̄) · Fe
0 (V(t−n−1, x̄)) dΩ (4.35)
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=

Nn
el∑

e=1

∫
ˆ̄Kn

e

W(x̂0 = 1, ˆ̄x) · Fe
0 (Vn

e (x̂0 = 1, ˆ̄x))
∣∣∣Jac ˆ̄xḠ

n,−
e

∣∣∣ d ˆ̄K

−

Nn
el∑

e=1

∫
ˆ̄Kn

e

W(x̂0 = −1, ˆ̄x) · Fe
0 (Vn−1

e′ (x̂0 = 1, ˆ̄x))
∣∣∣Jac ˆ̄xḠ

n−1,+
e

∣∣∣ d ˆ̄K

(4.36)

=

Nn
el∑

e=1

2∑
j=1

En, j
e (V,W) . (4.37)

Notably the data at the beginning of the time step is determined by the state at the end
of the previous time slab, hence Vn−1

e′ (x̂0 = 1). This data is not necessarily based on
the element with the same index e as the one in the current slab, since the mesh may be
changed over the time slab boundary. The above summation argument is defined as

En, j
e (V,W) B

−
∫

ˆ̄Kn
e
W(x̂1

0)Fe
0 (Vn−1

e (x̂2
0, ˆ̄x))

∣∣∣Jac ˆ̄xḠ
n−1,+
e

∣∣∣ d ˆ̄K if j = 1 ,∫
ˆ̄Kn

e
W(x̂2

0)Fe
0 (Vn

e (x̂2
0, ˆ̄x))

∣∣∣Jac ˆ̄xḠ
n,−
e

∣∣∣ d ˆ̄K if j = 2 ,
(4.38)

and its Jacobian is

∂En, j
k

∂Vn′, j′
i′,e′
=

0 if j = 1 ,

δee′δnn′
∫

ˆ̄Kn
e

W(x̂2
0) AV

0 (Vn
e (x̂2

0, ˆ̄x)) ψ̂i′ λ̂
j′(x̂ j

0)
∣∣∣Jac ˆ̄xḠ

n,−
e

∣∣∣ d ˆ̄K if j = 2 .
(4.39)

The first case evaluates to zero because this contribution stems from the derivative of the
state in slab En−1

h with respect to the degrees of freedom of the current (n th) space-time
slab.

Nonlinear system of equations

By choosing the (global) test functions as Wn
1,g = λ

n,1ψn,g, and Wn
2,g = λ

n,2ψn,g, a global
system of equations results as

Rn,1
g (V) B An(V,Wn,1

g ) + . . . + En(V,Wn,1
g ) = 0 , (4.40a)

Rn,2
g (V) B An(V,Wn,2

g ) + . . . + En(V,Wn,2
g ) = 0 . (4.40b)

The system is nonlinear, but using the linearization carried out before, a Newton method
can be applied to obtain its solution. In this case, the linear system that is solved in every
step of the Newton iteration for the updates ∆Vn,i

g of the expansion coefficients with respect
to the time- and space basis function combination λn,iψn,g, i ∈ {1, 2}, has a block structure
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of the form (
M11 M12

M21 M22

) (
∆Vn,1

∆Vn,2

)
= −

(
Rn,1

Rn,2

)
, (4.41)

with the blocks (
Mαβ

)
i j
=
∂Rn,α

i

∂Vn,β
j

, α, β ∈ {1, 2}, i, j ∈ {1, . . . , #d.o.f.} , (4.42)

where i and j enumerate the degrees of freedom of the discrete representation of V . To
reduce the computational effort, Polner (2005) discusses a simplification of the Newton
algorithm making use of the system matrix constructed symbolically as(

M11 M12

M21 M22

) (
1 −1
1 1

)
=

(
M11 + M12 −M11 + M12

M21 + M22 −M21 + M22

)
, (4.43)

which is approximated well by (
2M11 0

0 2M22

)
, (4.44)

and enables to solve in the Newton procedure with uncoupled blocks for updates for the

means V̄n B 1
2 (Vn,1 + Vn,2) and differences

4

Vn B 1
2 (−Vn,1 + Vn,2), as follows from(

1 −1
1 1

)−1 (
∆Vn,1

∆Vn,2

)
=

( 1
2

1
2

− 1
2

1
2

) (
∆Vn,1

∆Vn,2

)
=

∆V̄n

∆
4

Vn

 . (4.45)

The change of variables is equivalent to choosing the test functions as Wn
1,g = ψ

n,g, and
Wn

2,g = (λn,1 − λn,2)ψn,g = (tn−1 + tn − 2t)/(tn − tn−1)ψn,g.
For steady-state computations, the described procedure can be simplified by using only

a constant-in-time approximation (Shakib et al., 1991). In this case, the system is reduced
to the size of one of the above blocks, since only V̄n needs to be solved for.

4.3 Boundary conditions

The enforcement of some types of boundary conditions is intricate in continuous Galerkin
methods. The boundary integral in the weak form (4.3) can accommodate Neumann
boundary conditions directly, but these neither necessarily lead to a mathematically well-
posed formulation nor are they physically relevant for all variables. When no Neumann
boundary conditions are used, the boundary term Dn(V,W) is computed from the data of
the current approximation and the relevant conditions have to be enforced in a different way.
Shakib et al. (1991) advocate prescribing Dirichlet conditions via constraint equations.
Alternatively, to specify a Dirichlet boundary condition for a certain global degree of
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4.4 Least-squares stabilization operator

freedom jdof, the computed entry in the vector of expansion coefficients can be overwritten
with the given value, the row jdof in the diagonal block of the system (4.41) is filled with
zeros, and the entry at the position ( jdof, jdof) is set to one. Additionally, the row jdof of
the horizontally neighboring non-diagonal matrix block and the right hand side vector
are overwritten by zeros. The results presented in this chapter use the latter method for
prescribing Dirichlet boundary values. In comparison with linearized constraints, which
were used before, there was no observable difference between the two methods.

Another issue regarding boundary conditions concerns the use of entropy variables in
the global system, while many boundary conditions (whether of Dirichlet or Neumann
type) concern primitive (or other) variables. For instance, on the inflow boundary one
often specifies values for the velocity components and temperature. Also on no-slip
boundaries velocities are imposed. On outflow boundaries, pressure (or rather: the normal
stress, which for high Reynolds numbers is dominated by the pressure) and vanishing
tangential stress are prescribed. Since there is no correspondence by components between
entropy and primitive variables, it is not a priori clear how to impose a primitive variable
boundary condition on an entropy variable solution. For the previously mentioned cases,
the following procedure is followed: If, in a boundary node, one or more components
require imposing a primitive variable boundary condition, then the current entropy variable
approximation is transformed to primitive variables and the given conditions are imposed.
Next, the changed vector of primitive variables is transformed back to entropy variables
and overwrites the previously computed approximation. Of course, in the assembly of the
global system (4.41), still only those matrix lines are changed that belong to components
that have a specified Dirichlet condition.

4.4 Least-squares stabilization operator

In the above derivations, the least-squares term includes the so far unspecified stabilization
matrix τV . The basic requirements on τV arising from (4.3) are symmetry, positive defi-
niteness, appropriate scaling with the element size, and dimensional consistency (Polner,
Pesch, and van der Vegt, 2007). These properties are central for the stabilizing effect, which
the least-squares term is intended to have. At the same time, it should not compromise
the accuracy of the discretization. The cited requirements are not sufficient to deduce a
unique functional form of τV . Therefore various stabilization matrices have been proposed.
In the context of the entropy/general variable approach, Hauke and Hughes (1998) exper-
imentally designed a stabilization matrix. Hauke (2001) surveyed the available choices
for computing incompressible flows with primitive variables and compressible flows with
conserved variables; he points out the lack of stabilization matrices for compressible flows
when other than conserved variables are used. Hauke proposes a diagonal stabilization
matrix, which stabilizes each component of the Navier–Stokes equation individually, as
in the one-dimensional theory. Because the diagonal operator lacks robustness and is
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undefined in the incompressible limit, he examined also a non-diagonal matrix, which
was found to be more robust than the diagonal version and computationally cheaper than
the matrix used in previous work, e.g., (Shakib et al., 1991; Hauke and Hughes, 1998).
Unfortunately, since the definition of the non-diagonal matrix uses primitive variables and
the Jacobian Y,U , the problem regarding the incompressible limit remained unsolved.

In (Polner et al., 2007), great care is taken to provide the stabilization term with an addi-
tional property of the entropy-variable formulation, namely the well-defined incompressible
limit. Polner et al. design a stabilization matrix for compressible and incompressible flow
starting from the dimensional analysis of the governing equations. This fixes the dimen-
sions of the entries of τV . Next, the analysis of the low Mach-number limit of the Galerkin
operator, and the requirement that the least-squares operator has the same asymptotic
behavior, relates the limiting behavior of the entries of the matrix to the compressibility
parameters. Based on these findings, a functional form of τV , is proposed. The necessary
and sufficient condition to ensure nonlinear stability of the Galerkin least-squares method
is the symmetric positive definiteness of the stabilization matrix for entropy variables,
which yields further information about the matrix entries.

These requirements are initially imposed in the primitive variable formulation and
yield the class of dimensionally consistent stabilization matrices τY , with a well-defined
incompressible limit as αp → 0 in the form

τY =


τc ρ(ω + 1)

(
τm + (h − k)αpτe

)
v ̄ 2ραpτek

ω
(
τm + (h − k)αpτe

)
vı̄ δı̄ ̄ τm αpτevı̄

−(h − k)τe (αpT − 1)τev ̄ τe

 , (4.46)

where vı̄ are the velocity components, h the specific enthalpy, and k = v2
r̄/2 the specific

kinetic energy. The parameter ω ∈ � is bounded by the requirement of positive definiteness
of τV . For an analysis of the range of admissible values for ω see (Polner, 2005). The
stabilization parameters are defined as

τc =
hel |v|

2
, τm =

hel

2ρ|v|
`(Reel) , τe =

τm

cv
, (4.47)

with the element diameter hel. The element Reynolds number Reel is defined as

Reel =
mk ρ |v| hel

η
, (4.48)

with mk = min{1/3, 2Ck}, where Ck is a positive, mesh- and state-independent constant
related to the maximum polynomial degree of the basis functions used on the element.
Here, mk = 1/3 is prescribed, cf. (Franca et al., 1992). Finally, ` : �+0 → [0; 1] is a limiter
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4.5 Numerical experiments

function defined as

`(v) B

v, if 0 ≤ v < 1 ,
1, otherwise .

(4.49)

To obtain a stabilization matrix for entropy variables, the abovementioned operator τY is
transformed by multiplying the stabilization matrix for pressure primitive variables with
the Jacobian of the variable transformation V(Y), i.e., τV = V,YτY . The resulting operator
has the form

τV =


1
T

(
ατc − ωv2

r̄τm +
1
T (h − k)2 τe − ωv2

r̄ (h − k)τeαp

)
sym.

1
T

(
ωτm + (h − k)τe

(
1
T + ωαp

))
vı̄ 1

T

(
τmδı̄ ̄ + vı̄ v ̄τe

(
1
T − αp

))
− 1

T 2 (h − k)τe − 1
T v ̄τe

(
1
T − αp

)
1

T 2 τe

 . (4.50)

4.5 Numerical experiments

In this section, results of computations for several flow problems using the stabilization
operator τV are presented. The key feature of this stabilization operator is that it applies
to both compressible and incompressible fluids. Both cases are presented alongside in
(Polner et al., 2007), from which the results for the compressible case are included here.

The discretization uses the Galerkin least-squares formulation given in Section 4.2 with
entropy variables, linear basis functions in space for all variables and the constant-in-time
approximation as presented by Shakib et al. (1991).

4.5.1 Poiseuille flow

In this test case, flow along a channel with no-slip walls is considered. Poiseuille flow is
an exact solution of the incompressible Navier–Stokes equations and therefore a classical
problem to verify numerical methods. The resulting flow is aligned with the channel, the
velocity in that direction having a parabolic profile, and the pressure is increasing linearly
in the counter-stream direction. Dissipation due to shear creates a fourth order parabolic
temperature profile across the channel. Note that the described exact solution holds only
for an incompressible fluid. For a compressible medium its thermodynamic properties
couple the thermodynamic state back to the flow.

Although the exact solution assumes the channel to be infinitely long, the simulations
are based on a finite length domain Ω = [0; 2] × [0; 1] with non-periodic boundaries. At
the inflow, the parabolic velocity profile of the exact solution for incompressible flow and
a constant temperature are prescribed as Dirichlet conditions. At the outflow, only the
pressure is specified. The walls are no-slip with constant temperature. All computations
use time-dependent formulations and are run until a steady state is reached. Two values of
the Reynolds number are considered: Reη = 1 and Reη = 100. The Eckert number, which
occurs in the non-dimensional energy equation, is set to Ec = 0.016, which corresponds to
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Figure 4.1: Pressure
field for the compress-
ible Poiseuille flow com-
puted on an 80×40 mesh
with Reη = 100. The
flow direction is from
left to right.

a Mach number of M = 0.2 for the compressible flow of an ideal, diatomic (i.e., γ = 7/5)
gas with constant specific heats. The resulting equations of state are given by (2.30a)
and (2.30b) and the Prandtl number is set to Pr = 0.715, a typical value for air. A
converged solution on an 80 × 40 grid serves as reference for the error computation.

The aim of this case is to test whether the stabilization matrix is effective for compressible
flows. It is verified that the least-squares operator does not affect the second order spatial
accuracy of the method, when linear polynomial basis functions are used. The accuracy is
measured by the L2(Ω) norm of the velocity field.

Results
The velocity field is virtually the same as for the incompressible case, cf. (Polner et al.,
2007). As expected, the pressure in the compressible fluid adapts differently to the flow
state than in the incompressible case, see Figure 4.1. Figure 4.2 documents the second order
accuracy of the method; furthermore, it confirms that different values of the parameter ω
in the stabilization matrix do not degrade the accuracy of the method. On the other hand,
the stabilization parameter ω may influence the convergence of the iterative solver, as
was noticed when monitoring the residual norm during the computation on a fixed mesh,
cf. (Polner, 2005).

4.5.2 Driven cavity flow

The driven cavity flow is a classical problem to test algorithms for incompressible flows.
The fluid is enclosed in a unit square domain with no-slip walls, one of which is moving
with a constant velocity u1 = 1 in the tangential direction. At the contact points of this
moving lid with the neighboring boundaries the velocity is discontinuous. The challenge
of the test case is to control the singularities in these points while accurately representing
the smooth regions of the flow, away from the lid. The use of the stabilization operator
is essential for both compressible and incompressible flows to ensure stability without
compromising accuracy. A clustered mesh is used to resolve the discontinuities in the
two corners at the lid while being able to compute the driven cavity flow on meshes with
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Figure 4.2: Compressible Poiseuille flow, error of the velocity field (measured in the
L2(Ω)-norm) as a function of the mesh size ∆x for different values of the stabilization
parameter ω. Two Reynolds numbers are used: (a) Reη = 1, and (b) Reη = 100; for the
higher Reynolds number only two ω values are compared, as for ω = +0.3 results could
only be obtained with at least a 40 × 20 mesh.

relatively few elements. The dimensionless parameters Ec, Pr, and γ are chosen as in
Section 4.5.1. The computations are initialized with zero velocities and constant pressure
and temperature. The boundary conditions are no-slip for the velocity and Dirichlet-type
for the temperature.

Although the driven cavity is not typically used as a test case for compressible flow
algorithms, to correspond with the incompressible test results for the stabilization operator
presented in (Polner et al., 2007), the computation of the driven cavity flow has been
repeated for compressible flow at Reη = 400.

Results

Figure 4.3 on the following page shows the computational mesh, streamlines, and the
temperature field of the developed compressible flow. In this computation the new stabi-
lization matrix for entropy variables was employed, with the stabilization parameter set
to ω = 0. Qualitative agreement with the numerical results of Ghia et al. (1982) is good:
the secondary vortices in the both lower corners are captured and the asymmetry of the
flow pattern is reproduced. A one-to-one comparison is not attempted as the different
nature of the fluid (compressible vs. incompressible) inevitably results in differences.
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Figure 4.3: Computational
mesh and streamlines for
the compressible driven cav-
ity flow with Reη = 400 at
steady state. The shading in-
dicates the temperature.

4.5.3 Oblique shock

To illustrate the range of applicability of the stabilization matrix, a result for a compressible
inviscid test case (also presented by Hauke and Hughes (1998)) is added: an oblique shock
forming due to a Mach 2 incident flow at an angle of 10◦ to a slip wall at the lower
boundary of the computational domain. Again, an ideal gas with γ = 7/5 and Pr = 0.715
is assumed. The Eckert number is Ec = (γ − 1)M2 = 1.6, according to the cited Mach
number M = 2. The left and top boundary of the unit square are supersonic inflow
boundaries with prescribed values for the velocity, v = cos(10◦) e1 − sin(10◦) e2, pressure,
p = ρRT , and temperature, T = 1. At the outflow boundary on the right, no conditions
are imposed. The lower boundary is the slip wall, hence the normal component of the
velocity is enforced to vanish, v2 = 0. For the other variables there are no conditions. The
computations are initialized in the whole domain with the pressure and temperature that
are used at the inflow boundary; the initial velocity is set parallel to the wall: v = e1.

Results

The described flow cannot successfully be simulated without stabilization, but the new
stabilization operator is successful also in this case. No discontinuity capturing operator is
used, which explains the overshoots close to the shock, cf. Figure 4.4 on the next page.
For the shown computations, the stabilization parameter has been set to ω = 0. Other
choices (e.g., ω = ±0.4) are also possible, but the effects on the accuracy of the result or
the convergence rate are miniscule.
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Figure 4.4: Density field for the Mach 2 oblique shock problem. (a) The left and top edges
of the domain are inflow boundaries. The right edge is the outflow and along the base only
u2 = 0 is enforced. (b) Density field along x1 = 0.9. The solid line is the exact solution
with a shock at x2 = 0.5; the dashed line is the numerical solution.

4.6 Conclusions

Based on the unified formulation of the Navier–Stokes equations using entropy or pressure
primitive variables, a Galerkin least-squares finite element discretization has been presented
that is suitable for both compressible and incompressible flows. A related difficulty is to
design a stabilization matrix for the Galerkin least-squares term that is suitable for both
types of flow. Such a construction—based on a dimensional analysis of the stabilization
matrix for the primitive variables and the important symmetrization property of the entropy
variables—is detailed in (Polner, Pesch, and van der Vegt, 2007). The matrix depends
on the compressibility parameters of the simulated medium and leads to a formulation
whose implementation allows to perform both compressible and incompressible flow
computations. Three test cases have been presented here and it has been verified that the
stabilization matrix does not degrade the order of accuracy of the method.

These results are positive, but a few disadvantages reduce the practicality of the con-
tinuous least-squares method developed so far. These concern mainly the applicability of
continuous FEMs in more complicated geometries. The combination of elements with
different reference geometry (cf. Chapter 3) requires a matching of the local basis func-
tions across the faces, which may be hard to realize. The same holds for including local
refinement:
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• p-adaptation, i.e., locally increased polynomial order, again needs a matching of the
basis functions across element boundaries.

• Local h-refinement leads to hanging nodes, which cannot be accommodated easily in
the nodal basis function construction. They have to be removed either geometrically
(by appropriate refinement of the neighboring elements) or algebraically (when
assembling the system of equations).

On the practical side, ambiguities can occur during the imposition of boundary conditions
at points where faces with different conditions meet. In this case, the constraint for the
nodal degrees of freedom is not uniquely determined.2 In general, boundary conditions are
cumbersome to implement.

Furthermore, the global basis functions require also a global step in the computation—
typically in an assembly procedure for the equation system. If remeshing or refinement is
applied then these, too, entail global operations. These are disadvantageous, especially on
current parallel computer architectures.

All in all, several disadvantages reduce the flexibility of the method. This is the reason
why the quest for a widely applicable method as specified in Chapter 1 has taken a different
direction. The discontinuous Galerkin method presented in the following chapter alleviates
some of the above problems and combines geometric flexibility with a high degree of
locality of the discretization.

2This situation occurs, for example, at the two top corners of the driven cavity, where the moving lid and the
fixed side walls meet.
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Chapter 5

A discontinuous Galerkin finite element method
for the Navier–Stokes equations

La continuité dégoûte en tout.

Blaise Pascal (1623–1662), Pensées

5.1 Introduction

The continuous Galerkin discretization from Chapter 4 meets some of the goals set out
for this work but also has a few inherent disadvantages for the target applications. Some
of these can be overcome by a class of methods that will be considered now: discon-
tinuous Galerkin (DG) finite element methods. The main focus of this chapter is the
finite element discretization detailed in Section 5.2. The numerical method combines
the general variable formulation (with entropy variables constituting a particular choice)
with a DG discretization previously used for ideal gas flow (van der Vegt and van der
Ven, 2002b; van der Ven and van der Vegt, 2002). The interest in DG methods is partly
rooted in their ability to handle (almost) discontinuous solutions, which naturally arise in
nonlinear hyperbolic problems, see (Cockburn, 1999; Cockburn et al., 2000) for surveys
and various applications. Furthermore, they allow higher order accuracy than traditional
(e.g., finite volume) methods for such problems. Compared to traditional (continuous)
FEMs, the advantages of this type of discretization include the increased locality both
in the sense of data dependence and regarding the possibility of more accurate solution
representation. Thereby local hp-adaptation is accommodated naturally, i.e., h-refinement
for increasing the mesh resolution in space regions where (possibly discontinuous) small
scale flow structures need to be captured (van der Vegt and van der Ven, 2002b; Klaij et al.,
2006b), and p-adaptation for representing the solution with higher order smooth basis
functions per element (Houston et al., 2006). By using a space-time weak formulation
and (discontinuous) finite-element basis functions in space and time, the method can be
readily combined with an arbitrary Lagrangian–Eulerian (ALE) formulation (van der Vegt
and van der Ven, 2002b) to tackle problems with moving and deforming meshes and
boundaries.
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Barth (1999) has analyzed the standard DG and Galerkin least-squares variational
formulation with entropy variables and has proven (nonlinear) entropy stability for several
choices of the numerical flux. The work includes a DG discretization of the Euler equations
for ideal gases and several computations of sub- and supersonic flow. In his implementation,
Barth uses a Newton iteration for the solution of the system of equations arising from
the discretization. While the global linearization of the entropy variable formulation
refers back to the well-behaved Jacobians of the quasi-linear form, its implementation is
cumbersome and the computation costly. In the algorithm developed here, the linearization
is avoided by using a pseudo-time integration method for solving the nonlinear system of
equations. This technique augments the (time-dependent) equations with an additional
artifical time coordinate, for which the computed solution at a previous time level is the
initial condition, and for which a steady state solution is sought. The steady-state in pseudo-
time is approached by integrating with Runge–Kutta methods, often adapted to this special
purpose (Melson et al., 1993; Kleb et al., 1999; van der Vegt and van der Ven, 2002b;
Klaij et al., 2006a,b). The advantage of these methods is that the local character of the
DG discretization is—as far as possible—conserved because no global operations or data
structures are required. Pseudo-time methods have been analyzed by Klaij et al. (2006a)
for the ideal gas Navier–Stokes equations and found beneficial in particular for advection-
dominated flow. An important question is, however, how to combine the pseudo-time
method with the general variable approach. The analysis by Klaij et al. cannot answer this
question as it considers a simplified problem—the scalar advection-diffusion equation—
which does not accommodate the transformation that is interposed in the generalized
variable formulation. The stability of the solution of the nonlinear system of equations
for entropy and pressure primitive variables with a pseudo-time method is analyzed in
Section 5.3. The findings presented in this chapter demonstrate how the pseudo-time
integration can be combined with the generalized variable approach, what the impact of
different fluid models on the algebraic equation system is, and which measures have to be
taken when the incompressible limit is attained.

The analysis of the nonlinear solver concerns the Euler equations; the discretization is
also extended with the viscous terms of the Navier–Stokes system. For this purpose, the
second order partial differential equations are temporarily rewritten as a system of first
order equations. For the two sets of first order equations, weak forms are derived. In one
of the early applications of a DG FEM to the Navier–Stokes equations, Bassi and Rebay
(1997a) solved these equations successively. This approach has the disadvantage that the
number of variables is increased.1 Combining the two weak forms is possible and allows
to return to a single variable formulation, as, e.g., exploited in an alternative approach to
discretizing the viscous terms by Baumann and Oden (1999). A number of different DG
methods have been derived for elliptic problems, see the review by Arnold et al. (2002).

1It should also be mentioned that the method by Bassi and Rebay (1997a) suffers from a weak instability, see
the discussion in (Arnold et al., 2002).
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From these, the interior penalty method (Hartmann, 2006; Hartmann and Houston, 2006)
is selected here for the treatment of the viscous terms because it avoids the derivation and
costly computation of lifting operators needed, e.g., in (Klaij et al., 2006a,b).

Section 5.4 presents several numerical tests and examples for both compressible and
incompressible fluids. This chapter extends the material presented in (Pesch and van der
Vegt, 2006, 2007).

5.2 Discontinuous Galerkin discretization

For the purpose of this chapter, the Navier–Stokes equations are initially written in terms
of conservation variables U in the form of Eq. (2.41) as the system

U,t + Fe
p̄, p̄(U) = Fd

p̄,p̄(U,∇U) + S . (5.1)

In Section 2.8.1 it was observed that the viscous flux of the Navier–Stokes equations
for Newtonian fluids in the coordinate direction ı̄ is homogeneous of degree one in the
conservation variables U, and hence can be expressed as Fd

ı̄ = KU
ı̄ n̄(U) U,n̄, with the

viscosity matrices KU
ı̄ ̄ ∈ �

(d+2)×(d+2), which depend on the local state and the properties
of the fluid. This allows to rearrange the system of second order partial differential
equations (5.1) as a set of two systems of first order partial differential equations in the
state U and the auxiliary variable θ for the viscous flux. In component form this reads

Fe
ı̃p,p − θı̃ p̄, p̄ = S ı̃ , (5.2a)

θı̃ ̄ = KU
̄ r̄ı̃s̃(U) U s̃,r̄ . (5.2b)

Again, the time component of the Euler flux, Fe
0 , contains the state variables, U, see (2.15).

The viscous fluxes, in contrast, have no component in the time dimension. For the
generalized variable approach, (5.2a) remains unchanged except for dependence on the
set V instead of the conservation variables U. In Eq. (5.2b), the spatial derivatives of V are
premultiplied with the transformed matrices KV

ı̄ ̄ = KU
ı̄ ̄ ∂U/∂V , hence θı̃ ̄ = KV

̄ r̄ı̃s̃(V) Vs̃,r̄.

5.2.1 Function spaces

In this chapter, the functions used to approximate the solution fields are allowed to be
discontinuous at element boundaries both in space and time. More specifically, the test
and trial spaces for the DG method are based on functions that are elements of the space of
tensor product polynomials in space, augmented with monomial basis functions in time,
P(pt,ps)(K̂), on the space-time reference element K̂ . The maximum order in time and space
on the element Kn

e is given by pn,e
t and pn,e

s , respectively. These properties are reflected in
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the definition of the function space referring to the n th space time slab,

P
n,(〈pn,e

t 〉e,〈p
n,e
s 〉e)

h B {w ∈ L2(En
h) | w

Kn
e
◦ Gn

e ∈ P(pn,e
t ,pn,e

s )(K̂n
e ) ∀Kn

e ∈ T
n} . (5.3)

The notation 〈pn,e
t 〉e stands for the sequence of all polynomial degrees pn,e

t on the ele-
ments Kn

e in the n th space-time slab. The space P(〈pn,e
t 〉e,〈p

n,e
s 〉e)(K̂n

e ) thus contains the tensor
product polynomials of degree pn,e

s on the spatial reference element K̂n
e and of order pn,e

t in

time for this element. Based on the space for scalar functions Pn,(〈pn,e
t 〉e,〈p

n,e
s 〉e)

h , the function
spaces for state vectors V in the relevant variables, and for the flux and test function
matrices X are defined, respectively, as

V
n,(〈pn,e

t 〉e,〈p
n,e
s 〉e)

h B {V ∈ (L2(En
h))(2+d) | Vı̃ ∈ P

n,(〈pn,e
t 〉e,〈p

n,e
s 〉e)

h ∀ ı̃ = 1, . . . , 2 + d} , (5.4)

X
n,(〈pn,e

t 〉e,〈p
n,e
s 〉e)

h B {X ∈ (L2(En
h))(2+d)×d |

Xı̃ ̄ ∈ P
n,(〈pn,e

t 〉e,〈p
n,e
s 〉e)

h ∀ ı̃ = 1, . . . , 2 + d, ̄ = 1, . . . , d} .
(5.5)

On one element all variables are expanded to the same order. At the internal faces, the
polynomial representations of V on the two adjacent elements may lead to different values
on the two sides of the face. To deal with these discontinuities, a number of quantities are
defined in Section 5.2.2 based on the traces V±

Kn
e
, cf. Definition 3.2 on page 43.

Remark 5.1 Different order expansions for different variables on the same space-time
element are neither necessary nor used here. By contrast, for the continuous Galerkin
method used in Chapter 4, using basis functions of one order less for the pressure than for
the other components constitutes a possibility to fulfill the LBB criterion for incompressible
flow. The least-squares term in Chapter 4 is another means to the same end. �

5.2.2 Average and jump operators

Definition 5.1 (Averages): Let S be an internal or time face connecting the elementsKn1
e1

and Kn2
e2 , which may be neighbors within one time slab (n1 = n2 = n) or across a time

slab boundary, and Sb,n
e, j ⊂ Qh a boundary face of the element Kn

e . For a function f ∈

P
n,(〈pn,e

t 〉e,〈p
n,e
s 〉e)

h , the average of f on a face is defined as

{{ f }} B


1
2

(
f −
K

n1
e1

+ f −
K

n2
e2

)
on S ∈ F i,n ∪ F t,n ,

f −
Kn

e
on Sb,n

e, j ∈ F
b,n .

(5.6)
�

68



5.2 Discontinuous Galerkin discretization

Definition 5.2 (Jumps): Using the same notation as in Definition 5.1, the jump of f ∈
P

n,(〈pn,e
t 〉e,〈p

n,e
s 〉e)

h is defined as

J f K B

 f −
K

n1
e1

n+
K

n1
e1

+ f −
K

n2
e2

n+
K

n2
e2

on S ∈ F i,n ∪ F t,n ,

f −
Kn

e
n+
Kn

e
on Sb,n

e, j ∈ F
b,n .

(5.7)
�

Remark 5.2 1. The two normal vectors n+
K

n1
e1

and n+
K

n2
e2

on the internal face S are

outward with respect to the elements Kn1
e1 and Kn2

e2 , respectively, and hence in each
point of opposite direction, i.e., n+

K
n1
e1

= −n+
K

n2
e2

.

2. In the sequel, the notation for the outward normal vector with respect to Kn
e is

simplified as n+. The normal vector n on a face (cf. Definition 3.1) is implied to
point from the (arbitrarily assigned) left (L) to the right (R) element. If the face is a
boundary face, then the adjacent element is tagged as left and the normal vector is
outward. The limit notation f −

Kn
e

is replaced by f L and f R when a term is based on a
face integral. �

In the weak form to be derived, after application of the Gauß theorem to the element
integrals, terms of the form ∑

Kn
e ∈T

n

∫
∂Kn

e

(Wr̃)−Kn
e
(Fr̃p)−

Kn
e

n+p d(∂K) , (5.8)

i.e., the componentwise product of the test function Wı̃ and the normal flux Fı̃p n+p , occur.
The range of the summation in (5.8) can be conceptionally changed: In place of summing
over the element boundaries, one can rather use the faces S ∈ F n as summation base.
Given the multi-valued state on internal faces, the question is still open how to choose
the values of the flux F based on the states UL and UR on the left and right sides. This
problem is deferred by introducing a numerical flux function F̂, which assigns a single
value to the flux based on the two states. In this way it is clear that the flux is defined
uniquely per face and needs to be evaluated only once per face instead of once per element
side.2 Necessary conditions for a conservative and consistent numerical flux function are
(i) F̂(UL,UR; n) = −F̂(UR,UL;−n), and (ii) F̂(U,U; n) = F(U) · n.

When considered on a time face, the definition of the numerical flux F̂0 is governed
by causality: it has to be upwind in time, cf. Section 5.2.5. With this choice, each space-
time slab couples explicitly only to the preceding slab. The limited dependence has been

2Obviously the numerical flux function may have to be evaluated several times per face to approximate the
integral based on a numerical quadrature rule.
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exploited already in the per-time slab definition of the FE spaces in (5.4) and (5.5). By the
same token, the summations in the weak form will from now on include only one time slab,
and where necessary, previous slab data will be referenced appropriately. The following
relation—an application of the more general Equation (3.3) from (Arnold et al., 2002)
to (5.8)—is easily verified by inserting Definitions 5.1 and 5.2,∑

Kn
e ∈T

n

∫
∂Kn

e

(Wr̃)−Kn
e
(Fr̃p)−

Kn
e

n+p d(∂K)

=
∑
S∈F i,n

∫
S

(
JWr̃Kp{{F̂r̃p}} + {{Wr̃}} JF̂r̃pKp

)
dS +

∑
S∈F b,n

∫
S

(Wr̃)−Kn
e
Fr̃p np dS

+
∑
Kn

e ∈T
n

−
∫
K̄

n−1,+
e

(Wr̃)−Kn
e
(Fr̃0)+

Kn
e

dK̄ +
∫
K̄

n,−
e

(Wr̃)−Kn
e
(Fr̃0)−

Kn
e

dK̄

 .
(5.9)

Indices on a jump quantity concern the component of the normal vector, see (5.7). In the
boundary integral, the flux has not been marked as interior trace (F̂ı̃k)−

Kn
e

as its determination
depends on the boundary condition imposed on the face S ∈ F b,n. Several types of
boundary conditions are discussed in Section 5.2.7. The superscript ‘+’ on (Fı̃0)+

Kn
e

in the
integral over the past time face refers to an external limit, i.e., the data is taken from the
previous time slab.3 For the future time face, the limit is internal, so that (Fı̃0)−

Kn
e

is based
on the current time slab, see Section 5.2.5, where also the choice of the spatial numerical
flux function for the Euler equations is discussed.

The support of the test function W is a subset of the current time slab only, which
simplifies the jump on the time faces. As the numerical method is required to be locally
conservative, the jump of the flux on internal faces has to vanish, JF̂ı̃ jK = 0. For a unique
flux value, the average becomes {{F̂ı̃ j}} = F̂ı̃ j. With these replacements and using the
definition of the mean and jump on boundary faces, the above relation can be simplified to∑
Kn

e ∈T
n

∫
∂Kn

e

(Wr̃)−Kn
e
(Fr̃p)−

Kn
e

n+p d(∂K) =
∑

S∈F i,n∪F b,n

∫
S

JWr̃KpF̂r̃p dS

+
∑
Kn

e ∈T
n

−
∫
K̄

n−1,+
e

(Wr̃)−Kn
e
(Fr̃0)+

Kn
e

dK̄ +
∫
K̄

n,−
e

(Wr̃)−Kn
e
(Fr̃0)−

Kn
e

dK̄

 .
(5.10)

3The limit could thus also be written as (Fı̃0)−
Kn−1

e′
, where e′ is the element index of the element in En−1

h that
connects to Kn

e across the face Sp,n
e,e′ .
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5.2 Discontinuous Galerkin discretization

5.2.3 Weak form of the flux form equations

Equation (5.2a) appears in divergence form and thus lends itself well to the finite element
procedure for conservation laws: multiplication with a test function W ∈ Vn,(〈pn,e

t 〉e,〈p
n,e
s 〉e)

h
and integration over a space-time slab. The latter is represented as the sum of the integrals
over space-time elements Kn

e of the tessellation T n. Integration by parts yields

∑
Kn

e ∈T
n

−
∫
Kn

e

(Wr̃,pFe
r̃p −Wr̃, p̄θr̃ p̄ +Wr̃S r̃) dK

+

∫
∂Kn

e

(Wr̃)−Kn
e

(
(Fe

r̃p)−
Kn

e
n+p − (θr̃ p̄)−

Kn
e

n+p̄
)

d(∂K)

 = 0 ,

(5.11)

with n the unit outward normal vector with respect to the element Kn
e . Here it has

been exploited that the viscous fluxes in the time direction vanish. That allows to use
differentiation only in the spatial directions while integrating over a space-time element.
The train of thought of Eq. (5.10) applied to (5.11) yields

−
∑
Kn

e ∈T
n

∫
Kn

e

(Wr̃,pFe
r̃p−Wr̃, p̄θr̃ p̄+Wr̃S r̃) dK +

∑
S∈F i,n∪F b,n

∫
S

(JWr̃KpF̂e
r̃p−JWr̃Kp̄θ̂r̃ p̄) dS

+
∑
Kn

e ∈T
n

−
∫
K̄

n−1,+
e

(Wr̃)−Kn
e
(Ur̃)+Kn

e
dK̄ +

∫
K̄

n,−
e

(Wr̃)−Kn
e
(Ur̃)−Kn

e
dK̄

 = 0 .

(5.12)

The states U on the past and future time faces stem from the time component of the Euler
flux, Fe

0 , and depend on the state in the discretized variables, viz. U = U(V).
To allow for moving and deforming domains and meshes, van der Vegt and van der Ven

(2002b) have shown how—based on the space-time normal vector and fluxes—the above
weak form can be interpreted in arbitrary Lagrangian–Eulerian manner: On the space-time
faces, the movement of the mesh with the velocity vg leads to a flux Ûvg

p̄n p̄ across the
face with space-time normal vector n. The ALE form will not be exploited in the sequel,
therefore it is not derived and the original reference should be consulted for details.

5.2.4 Weak form of the viscous flux equation

In this section, the homogeneity equation (5.2b) of the first order system formulation of
the Navier–Stokes equations is treated. Notably, by rewriting Eq. (5.1) as a system of first
order equations (5.2), the number of unknowns that would need to be computed and stored
during the solution process is increased significantly. The goal is to return to a single
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Chapter 5 DG FEM for the Navier–Stokes equations

variable formulation by deriving a weak expression for θ in terms of the state variables V
and substituting this expression back into (5.12).

The diffusive flux variable θ from Eq. (5.2b) is multiplied with a test function ma-
trix X ∈ Xn,(〈pn,e

t 〉e,〈p
n,e
s 〉e)

h with double contraction and the result is integrated over a physical
space element K̄n

e (t), viz.,∫
K̄n

e (t)

Xr̃ p̄θr̃ p̄ dK̄ =
∫
K̄n

e (t)

Xr̃ p̄KV
p̄q̄r̃ s̃Vs̃,q̄ dK̄ , (5.13)

where r̃, s̃ = 1, . . . , 2 + d index the solution components and p̄, q̄ = 1, . . . , d concern
summation over space dimensions. Partial integration of the term on the right hand side
yields∫
K̄n

e (t)

Xr̃ p̄KV
p̄q̄r̃ s̃Vs̃,q̄ dK̄ =

∫
∂K̄n

e (t)

(Xr̃ p̄)−
Kn

e
(KV

p̄q̄r̃ s̃)
−
Kn

e
V̂s̃ n+q̄ d(∂K̄) −

∫
K̄n

e (t)

(Xr̃ p̄KV
p̄q̄r̃ s̃),q̄Vs̃ dK̄ .

The symbol V̂ denotes a data vector of values for the variables V representative on
the element boundary, i.e., an internal or boundary face, in much the same way as the
introduction of numerical fluxes in the conservation equation. How V̂ is chosen based on
the discontinuous representation on the elements is the topic of Section 5.2.5. The second
resultant term is again integrated by parts, this time making use of the fact that the support
of the test function is limited to Kn

e , so that the outer limit vanishes,∫
K̄n

e (t)

(Xr̃ p̄KV
p̄q̄r̃ s̃),q̄Vs̃ dK̄ =

∫
∂K̄n

e (t)

(Xr̃ p̄)−
Kn

e
(KV

p̄q̄r̃ s̃)
−
Kn

e
(Vs̃)−Kn

e
n+q̄ d(∂K̄) −

∫
K̄n

e (t)

Xr̃ p̄KV
p̄q̄r̃ s̃Vs̃,q̄ dK̄ .

To coincide with the space-time integral form of Equation (5.2a), the previous equations are
integrated over time. As mentioned earlier, there are no diffusive terms in the time direction,
so that the time faces can be neglected in the space-time form. With this convention, the
integration by parts also includes the time dimension, and summing over all space-time
elements in slab En

h, the above contributions add up to∑
Kn

e ∈T
n

∫
Kn

e

Xr̃ p̄θr̃ p̄ dK

=
∑
Kn

e ∈T
n

∫
Kn

e

Xr̃ p̄KV
p̄q̄r̃ s̃Vs̃,q̄ dK +

∑
Kn

e ∈T
n

∫
∂Kn

e

(Xr̃ p̄)−
Kn

e
(KV

p̄q̄r̃ s̃)
−
Kn

e
(V̂s̃ − (Vs̃)−Kn

e
) n+q̄ d(∂K) ,
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to which (5.9) can be applied, so that

=
∑
Kn

e ∈T
n

∫
Kn

e

Xr̃ p̄KV
p̄q̄r̃ s̃Vs̃,q̄ dK +

∑
S∈F i,n

∫
S

JXr̃ p̄KV
p̄q̄r̃ s̃Kq̄ {{V̂s̃ − Vs̃}} dS

+
∑

S∈F i,n∪F b,n

∫
S

{{Xr̃ p̄KV
p̄q̄r̃ s̃}} JV̂s̃ − Vs̃Kq dS .

(5.14)

At this stage, the numerical fluxes that occur in Eqs. (5.12) and (5.14) have to be specified
to complete the weak formulation.

5.2.5 Choice of the numerical fluxes

In the previous sections, face integrals of various quantities f have occurred and typically
the decision how to choose a value representative of the possibly multi-valued function f
on the face was deferred by introducing an approximation f̂ , often called numerical flux.
It is now time to define these fluxes in terms of the data available from the element(s)
neighboring the face.

Time flux

Elements in different time slabs are connected by the time faces. An element Kn
e in the

slab En
h connects to the element Kn−1

e′ in the previous slab through the face Sp,n
e,e′ and to the

element Kn+1
e′ through Sf,n

e,e′ .
4 On these faces, the choice of the numerical flux in Eq. (5.12)

is based on a causality argument: the current state can only be determined by the past, not
by the future; vice versa, the current state can only have an effect on the future, not on the
past. Hence the fluxes across time faces are defined as

V̂ B

Vn−1
e′ K̄

n−1,−
e

on Sp,n
e,e′ ,

Vn
e K̄n,−

e
on Sf,n

e,e′ .
(5.15)

Euler flux

In Equation (5.12), the integrals of the (numerical) Euler flux F̂e on the faces are an
addition that distinguishes the DG discretization from the method applied in Chapter 4.5

Because of the discontinuous basis functions, the state on two adjacent elements (or the
element and the boundary value) may be different when evaluated on the element boundary.

4Per element Kn
e more than one such face (of either type) can exist on the hyperplanesHn−1 andHn, if the

element is refined or de-refined between time slabs.
5It may be argued that this term is also present in the continuous Galerkin weak form, just there all jump
quantities vanish so that there is no contribution, except on boundary faces.
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Chapter 5 DG FEM for the Navier–Stokes equations

To give a meaning to the multivaluedness, an interpretation typically used in finite volume
methods for gas dynamics may be followed: The two states are considered the data of a
(hypothetic) initial value problem with discontinuous data, a so-called Riemann problem.
The solution of the Riemann problem requires additional knowledge about the considered
medium and—depending on the amount of detail invested in the solution—different
compromises between accuracy and computational cost are possible, cf. (Menikoff and
Plohr, 1989; Toro, 1999).

Alternatively, a numerical flux may be defined without the interpretation as a Riemann
problem and explicit reference to the medium, making it more generic, possibly at the
cost of the accuracy of the description. Remarkably, some seemingly obvious choices are
not suitable, for instance the mean flux F̂(UL,UR) = 1/2 (F(UL) + F(UR)) is unstable, cf.
(LeVeque, 2002).

Two choices for the numerical Euler flux function F̂e that are suitable for the DG method
are presented next, along with a discussion of their suitability for the goals set out for the
current work. Regarding the notation, the numerical flux functions for the Euler flux are
implied to return a normal flux to the face. For this reason, the function is dependent on
the normal vector n and constitutes a (d + 2)-component data vector, F̂e

ı̃ . The argument
of the space-time face integral in Eq. (5.12) will be adapted so that the normal vector
multiplication between the jump of the test function and the Euler flux matrix is moved
inside the numerical flux function.

HLLC The HLLC numerical flux for the Euler equations, cf. (Toro et al., 1994; Toro,
1999) for its derivation, is an approximate Riemann solver originally developed in the
context of Godunov finite volume methods. It has been applied many times in DG FEMs,
e.g. by van der Ven and van der Vegt (2002); Klaij et al. (2006b), and van der Vegt and
van der Ven (2002b), who also detail the computation of the flux in space-time.

The HLLC flux is a good choice for computing ideal gas flow, and can be applied to
certain real gases (see the applications with the covolume EOS in (Toro et al., 1994) and
in Section 5.4.3 of this thesis), but ultimately its derivation restricts it to gaseous media.
This restriction applies to many numerical fluxes, which also often do not scale correctly
in the low Mach-number/incompressible limit (Guillard and Viozat, 1999; Guillard and
Murrone, 2004). This can manifest itself in the deterioration of numerical accuracy and
convergence. Consequently such flux functions are not suitable for a numerical method
that aims at being applicable for different media and flow conditions.

Because the HLLC flux does not fulfill the requirement of genericity for the development
of a unified numerical method for compressible and incompressible flows, a different
solution had to be found. An examination of the discontinuous Galerkin FEM with a
stabilization operator that includes least-squares contributions from both elements and faces
(Houston et al., 2002) seemed promising. It offered the worthwhile effect that the work
on least-squares operators for both compressible and incompressible flows (cf. Chapter 4)
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5.2 Discontinuous Galerkin discretization

could have been reused. Houston et al. add a diffusion-like term based on the state
difference on the element boundaries. However, for several reasons the investigations in
this method were concluded negatively: The available analysis considers linear hyperbolic
systems only and would need to be extended. Also, the splitting of the flux Jacobians
on the faces is non-trivial, because they concern the variable set V . Even if this could be
accomplished analytically, the evaluation of the whole stabilization term is still expected to
be computationally expensive and already results obtained for the advection equation were
not convincing when related to the computational cost. Finally, the element stabilization
operator from Chapter 4 could be reused, but whether it could be readily adapted to serve
also as the face stabilization operator would have to be verified.

For these reasons, the general simulation framework uses the local Lax–Friedrichs flux,
which applies to all fluids since it does not exploit specific information, for example about
the wave structure. Also in favor of this decision counts the decreasing importance of the
specific choice of the numerical flux for higher order DG methods (Persson and Peraire,
2006; van der Vegt, 2006).

(L)LF The Lax–Friedrichs (LF) flux for conservation variables in the direction of a
normal n is given by

F̂LF
ı̃ (UL,UR; n) B

1
2

(
Fı̃p(UL) + Fı̃p(UR)

)
np −

1
2
λmax(U?; n)

(
UR
ı̃ − UL

ı̃

)
, (5.16)

with λmax(U?; n) an estimate of the maximum eigenvalue of AU(U; n) = ns̄ ∂F s̄/∂U for
the states U on a face. The computation is facilitated by the knowledge of the eigenvalues
of the Euler flux Jacobians for conservation variables, cf. (Toro, 1999).

The LF flux adds a diffusion-like term to the (unstable) mean flux to damp numerical
instabilities. It is actually overly diffusive, but thanks to its very general nature and
independence of the EOS it is often preferred when (mixtures of) several fluids are treated.
For the local version (LLF), the eigenvalue computation is based on the mean states on the
adjacent element(s) and hence needs to be done only once per element. The global version
maximizes the eigenvalue non-locally, which is computationally more involved. Cockburn
and Shu (1998) report that they found the local Lax–Friedrichs flux to be well-suited for
their Runge–Kutta-DG method, leading to less dissipation, but also decreased robustness,
compared to the global Lax–Friedrichs flux.

For entropy variables, Barth (1999) defines the flux as

F̂LF
ı̃ (VL,VR; n) B

1
2

(
Fı̃p(VL) + Fı̃p(VR)

)
np −

1
2
λmax(V?, n) (AV

0 )ı̃r̃
(
VR

r̃ − VL
r̃

)
, (5.17)

and proves nonlinear entropy stability. The matrix AV
0 = AV

0 (V?) is evaluated with the
state for which the eigenvalue of AU(V?, n) is maximized, λmax(V?, n), which is usually
determined with a one- or two-point approximation in state space.
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V̂ on space-time faces and the viscous flux θ̂

The development of discontinuous Galerkin methods for elliptic problems furnished a
multitude of numerical fluxes for such equations. An overview is given by Arnold et al.
(2002). For the current work only one specific choice will be used and hence described:
the interior penalty (IP) method (Hartmann, 2006; Hartmann and Houston, 2006). For this
method, the numerical flux V̂ is defined as

V̂ı̃ B

{{Vı̃}} on Si,n
{e1,e2}

,

Vb
ı̃ (VL) on Sb,n

e, j .
(5.18)

with the boundary data Vb
ı̃ , which accommodates, for example, Dirichlet (a value Vb

ı̃ is
specified) and Neumann (Vb

ı̃ = VL
ı̃ ) conditions. The numerical viscous flux is chosen as

θ̂ı̃ ̄ B {{Fd
ı̃ ̄}} − δı̃ {{(A

V
0 )ı̃s̃}}JVs̃K ̄ on Si,n

{e1,e2}
,

θ̂ı̃ p̄ n p̄B bN
ı̃

θ̂ı̃ ̄B Fd
ı̃ ̄(V

L) − δı̃ (AV
0 )ı̃s̃ (VL − Vb(VL))s̃ n ̄

}
on Sb,n

e, j

{
with Neumann b.c.,
with Dirichlet b.c.,

(5.19)

with Neumann data bN
ı̃ . Here, again, the transformation matrix AV

0 has been interposed to
match the units of the two summands. The penalization parameter δı̃ = δı̃(S) on a face S
that connects the elements Kn

e and Kn
e′ is given by Hartmann and Houston (2006) as

δı̃(S) = CIP
η (pmax

s )2

h
, (5.20)

where h = min{meas(Kn
e ),meas(Kn

e′ )}/meas(S) estimates the spatial element extent in the
direction orthogonal to the face S, pmax

s is the maximum polynomial degree on the adjacent
element(s), η the dynamic viscosity, and CIP a sufficiently large positive constant stabiliza-
tion parameter, cf. (Hartmann and Houston, 2006) for its choice. For boundary faces with
other than Neumann conditions the same definition of δı̃ with only one connecting element
applies. If a Neumann condition is applied for the ı̃ th component, then no penalty applies
and δı̃(S) = 0.6 For all numerical examples in Section 5.4, the value CIP = 10 is chosen
and the same parameter δı̃ is used for all components of the system, so that the component
index ı̃ will be dropped from now on.

5.2.6 Primal form of the weak formulation

Given the definition of the numerical viscous fluxes, the derivation of a weak form involv-
ing only the unknowns V continues. To replace the element integral of the diffusive flux in
Eq. (5.12), the test function in (5.14) is chosen as Xı̃ ̄ = Wı̃, ̄. Inserting the viscous numeri-

6With this definition, splitting up the boundary face terms according to the condition applied per component is
avoided.
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cal fluxes, using the additivity and idempotence of the average operator and observing that
on internal faces JV̂K = J{{V}}K = 0, the primal formulation of the Navier–Stokes equations
with interior penalty is:

Find V ∈ Vn,(〈pn,e
t 〉e,〈p

n,e
s 〉e)

h such that for all W ∈ Vn,(〈pn,e
t 〉e,〈p

n,e
s 〉e)

h holds

−
∑
Kn

e ∈T
n

∫
Kn

e

(Wr̃,pFe
r̃p −Wr̃, p̄Fd

r̃ p̄ +Wr̃S r̃) dK

+
∑
S∈F i,n

∫
S

{
(WL

r̃ −WR
r̃ )F̂e

r̃ − JWr̃Kp̄

(
{{Fd

r̃ p̄}} − δ(S) {{(AV
0 )r̃ s̃}}JVs̃Kp̄

)}
dS

+
∑
S∈F b,n

∫
S

{
WL

r̃ F̂e
r̃ (VL,Vb(VL); n)

−WL
r̃ n p̄

(
Fd

r̃ p̄(VL) − δ(S) (AV
0 )r̃ s̃ (VL − Vb(VL))s̃ np̄

)}
dS

−
∑
S∈F i,n

∫
S

{{Wr̃, p̄KV
p̄q̄r̃ s̃}} JVs̃Kq̄ dS −

∑
S∈F b,n

∫
S

Wr̃,p̄KV
p̄q̄r̃ s̃ (VL

s̃ − Vb
s̃ (VL)) nq̄ dS

−
∑
Kn

e ∈T
n

∫
K̄

n−1,+
e

(Wr̃)−Kn
e
Ur̃(V+Kn

e
) dK̄ +

∑
Kn

e ∈T
n

∫
K̄

n,−
e

(Wr̃)−Kn
e
Ur̃(V−Kn

e
) dK̄ = 0 .

(5.21)

As mentioned above, the jump of the test function in the face integral of the numerical
Euler flux has been rewritten as the difference of the test function values on the two sides
of an internal face because the numerical flux typically immediately returns a normal flux.
In the boundary face integrals, the numerical fluxes are based on the internal state VL and
a boundary state Vb(VL), which may also depend on the internal state. Examples of such
boundary states and the resulting fluxes are given next.

5.2.7 Boundary conditions

At the boundary Qh, boundary conditions have to be imposed according to the physical
conditions. Different scenarios are inflow and outflow, and different interfacial conditions
like slip surfaces (along which the fluid may move tangentially) or no-slip ones (where the
velocity difference between fluid and boundary has to vanish). The determination which
set of quantities has to be prescribed to obtain a well-defined formulation is a topic of
profound research. Apart from the type of the boundary, also the properties of the fluid
play a significant role: here another difference between the treatment of compressible
and incompressible fluids surfaces. In contrast to other instances of such discrepancies,
with boundary conditions the dependence on the fluid cannot be circumvented. Hence, in
this section, different conditions are specified for compressible and incompressible cases.
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Notably, some of the compressible type boundary conditions are derived for an ideal gas
again, and as such should be applied with care to other fluids.

In the DG context, some types of boundary conditions can be implemented by trans-
forming the prescribed values to the currently used variable set and passing these values
as the external state to the numerical flux. This simplifies the imposition of the condition
compared to continuous Galerkin methods (see Chapter 4), where boundary conditions
have to be imposed in the global set of equations. In the DG implementation, even if the
numerical flux cannot be used on the boundary, the boundary condition specification is
still local. Possible conditions for the computational framework are:

Subsonic in-/outflow

A commonly used condition for compressible subsonic inviscid flow is to specify entropy s
and stagnation enthalpy h + k = e + pα + k at the inflow and pressure at the outflow
boundary. To obtain a complete set of variables, at the inflow the flow angle(s) must also be
prescribed and the internal pressure is used for the determination of the external state, too.
At the outflow, a set of internal values is required to construct a state with the prescribed
pressure.

Darmofal et al. (2000) exposed the exponential decay of initial disturbances when this
set of boundary conditions is used, though the decay rate tends to zero for low Mach
numbers. In practice, especially the amount of thermodynamical relations that are needed
for the construction of the external state from the given values for this type of boundary
conditions is large, so that both the implementation and computation is costly.

In-/outflow far-field state

In some instances, e.g. the computation of very low Mach number flow, cf. Section 5.4.1,
rather than the previous pair of in- and outflow conditions, the external states of the
numerical flux are prescribed completely from given values, independent of the internal
flow state. This choice is simple to implement and, especially for steady-state cases, often
leads to indistinguishable results compared to the previous choice.

Incompressible in-/outflow

For incompressible fluids, at the inflow the value of the pressure is taken from the internal
state, the remaining values are prescribed. At outflow boundaries, the normal stress is
prescribed (for inviscid flow or high Reynolds number this reduces to the pressure) and the
tangential stress should vanish. See also Section 4.3 and (Wesseling, 2000).
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Slip boundary

For the simulation of the limit of inviscid flow with the Euler equations, the condition at
a material boundary is that the flow is tangential to the boundary. This can be enforced
in different ways. One possibility (van der Vegt and van der Ven, 2002a) is to prescribe
the external state of the numerical flux in such a way that the evaluation of the numerical
flux will lead to tangential flow. Obviously, the determination of such an external state
requires knowledge of the internals of the flux evaluation and may be different for a
different numerical flux function. This restriction, together with the fact that the HLLC
flux used by van der Vegt and van der Ven is defined for compressible fluids only, made it
necessary to look for an alternative way to evaluate the boundary flux. By determining
the tangential component of the velocity and using it, together with the internal pressure,
for the computation of the exact spatial Euler flux (2.15), the slip flow computation is
general. Apart from the variables stipulated so far, one more quantity remains to be
specified, typically temperature. Its value can be chosen to obtain different effects: Either
a prescribed temperature value can be imposed as Dirichlet condition, or, to simulate
an adiabatic wall (not permitting heat flow, n · ∇T = 0, i.e., a homogeneous Neumann
condition), the internal temperature is used.

No-slip boundary

When the fluid is attributed a finite viscosity, a boundary layer will form at a material
surface due to friction. The effect is modeled by assuming a no-slip condition at the surface.
As with the slip boundary, if one wants to stay independent of the numerical flux, the
enforcement of the no-slip condition should be based on the exact Euler flux. To evaluate
the flux, the internal pressure is used together with the prescribed velocity of the boundary.
For temperature, the same possibilities exist as in the slip boundary flux.

5.2.8 The nonlinear set of equations and its solution

Based on the weak form (5.21), a set of equations is obtained by choosing the basis and
test functions. The basis functions ψ̂ are used directly as test functions and the basis is
defined as tensor product of the monomials with the aforementioned order pn,e

s in space
combined with the monomials up to order pn,e

t in time. In two-dimensional space, for
example, the following sequence of polynomials in reference coordinates x̂i is chosen
as a basis of P(〈pn,e

t 〉e,〈p
n,e
s 〉e)(K̂) : [ψ̂0 = 1, ψ̂1 = x̂1, ψ̂2 = x̂2, ψ̂3 = x̂1 x̂2, ψ̂4 = x̂0], where

it has been assumed that the reference time x̂0 maps to x0 = t. Limiting the number
of basis functions to 1, 4, or 5, respectively, includes the standard cases (i) constant
representation per element (pn,e

t = pn,e
s = 0), resulting in a first order convergent numerical

method, (ii) constant in time and bilinear in space (pn,e
t = 0, pn,e

s = 1), which makes the
spatial discretization second order accurate, and (iii) second order description in both
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space and time (pn,e
t = 1, pn,e

s = 1). Corresponding bases for other dimensions and the
generalization to higher order are straightforward to procure.

The basis functions exist on each element and hence the physical space basis functions
are enumerated as ψn

(e,k̃, f )
, where e represents the element number in slab n, k̃ ∈ {1, . . . , d+2}

gives the equation number, and f indexes the local basis functions per element. For
a variable vector V ∈ Pn,(〈pn,e

t 〉e,〈p
n,e
s 〉e)

h the expansion coefficient matrix on element Kn
e is

denoted as V̌n
e and all expansion coefficients related to the n th space-time slab are subsumed

as V̌n.
For V ∈ Vn,(〈pn,e

t 〉e,〈p
n,e
s 〉e)

h , the terms from (5.21) lead to the definitions (no summation on
double index k̃),

An
(e,k̃, f )(V) B −

∫
Kn

e

∂ψn
(e,k̃, f )

∂xp
Fe

k̃p
(V) + ψn

(e,k̃, f )S k̃

 dK , (5.22a)

Bn
(e,k̃, f )(V) B −

∫
K̄

n−1,+
e

(ψn
(e,k̃, f ))

−
Kn

e
Uk̃(V+

Kn
e
) dK̄ +

∫
K̄

n,−
e

(ψn
(e,k̃, f ))

−
Kn

e
Uk̃(V−

Kn
e
) dK̄ , (5.22b)

Cn
(e,k̃, f )(V) B

∑
S∈F i,n

∫
S

(ψn,L
(e,k̃, f )

− ψn,R
(e,k̃, f )

) F̂e
k̃
(VL,VR; n) dS

+
∑
S∈F b,n

∫
S

ψn,L
(e,k̃, f )

F̂e
k̃
(VL,Vb(VL); n) dS ,

(5.22c)

Dn
(e,k̃, f )(V) B

∫
Kn

e

∂ψn
(e,k̃, f )

∂xp̄
KV

p̄q̄k̃s̃
Vs̃,q̄ dK , (5.22d)

En
(e,k̃, f )(V) B −

∑
S∈F i,n

∫
S

Jψn
(e,k̃, f )Kp̄

(
{{KV

p̄q̄k̃s̃
Vs̃,q̄}} − δ(S) {{(AV

0 )k̃ s̃}}JVs̃Kp̄

)
dS

−
∑
S∈F b,n

∫
S

ψn,L
(e,k̃, f )

n p̄

(
KV

p̄q̄k̃s̃
VL

s̃,q̄ − δ(S) (AV
0 )k̃ s̃(V

L
s̃ −Vb

s̃ (V)) np̄

)
dS ,

(5.22e)

Fn
(e,k̃, f )(V) B −

∑
S∈F i,n

∫
S

{{

∂ψn
(e,k̃, f )

∂xp̄
KV

p̄q̄k̃s̃
}}JVs̃Kq̄ dS

−
∑
S∈∪F b,n

∫
S

∂ψn
(e,k̃, f )

∂x p̄
KV

p̄q̄k̃s̃
(VL

s̃ − Vb
s̃ (VL)) nq̄ dS .

(5.22f)

In the definition of An
(e,k̃, f )

, Bn
(e,k̃, f )

, and Dn
(e,k̃, f )

one can immediately make use of the fact
that the support of ψn

(e,k̃, f )
is limited to a single element Kn

e . In the same way it is clear
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that Cn
(e,k̃, f )

, En
(e,k̃, f )

, and Fn
(e,k̃, f )

only yield contributions from faces S that neighbor Kn
e .

For a single choice of the test function W as ψn
(e,k̃, f )

, the inviscid (Euler) part of Eq. (5.12)
becomes

L
e,n
(e,k̃, f )

(V̌n; V̌n−1) B An
(e,k̃, f )(V̌

n) + Bn
(e,k̃, f )(V̌

n; V̌n−1) +Cn
(e,k̃, f )(V̌

n) = 0 , (5.23)

and the set of all these equations for the n th space-time slab is subsumed as

Le,n(V̌n; V̌n−1) = 0 , (5.24)

including the unknowns V̌n and the known solution V̌n−1 from the previous space-time slab,
which enters through the integral over the ‘past’ time faces in (5.22b). Note that the method
developed in this article is implicit, no Courant–Friedrichs–Lewy (CFL) criterion applies,
and only the accuracy requirement limits the time step. The evaluation of all integrals
in (5.22) is based on Gauß quadrature rules of order 2(p + 1) on the faces and 2p + 1 on
the elements, with p the maximum order of the polynomial representation.

The diffusive terms from Eq. (5.12) are summed up in the operator

L
d,n
(e,k̃, f )

(V̌n) B Dn
(e,k̃, f )(V̌

n) + En
(e,k̃, f )(V̌

n) + Fn
(e,k̃, f )(V̌

n) . (5.25)

For the Navier–Stokes equations the inviscid and viscous operators are combined as

Ln
(e,k̃, f )(V̌

n; V̌n−1) B Le,n
(e,k̃, f )

(V̌n; V̌n−1) +Ld,n
(e,k̃, f )

(V̌n) = 0 , (5.26)

and the complete set of these equations for all test functions is denoted Ln(V̌n; V̌n−1) = 0.

Having derived the FE discretization of the Euler and Navier–Stokes equations, a crucial
part of the numerical method is how to solve the algebraic system of equations (5.26)
for the expansion coefficients V̌n. In the generalized variable context, (damped) Newton
iteration techniques have frequently been used (Hauke and Hughes, 1998; Barth, 1999)
since the solution of the linear system in each iteration can benefit from the symmetrization
property of the entropy variables. However, the linearization needs the flux Jacobians AV

i ,
which are nontrivial to derive, implement, and evaluate. In the DG context also the
linearization of the numerical fluxes would be required. Based on previous work by van der
Vegt and van der Ven (2002b) and van der Ven and van der Vegt (2002), a different strategy
is pursued here, namely pseudo-time integration. To apply this technique, Eq. (5.26) is
considered dependent on an additional (hypothetical) time variable, τ, in the form

|K̄n
e | P

∂V̌
∂τ
= −

1
∆t
Ln

(e,k̃, f )(V̌ , V̌
n−1) , (5.27)
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where the volume of the space element |K̄n
e | approximates the mass matrix,7 and the

division by the time step ∆t facilitates the computation of steady state solutions and
restores dimensional consistency (van der Vegt and van der Ven, 2002b). The presence
of the matrix P will be explained in Section 5.2.10. The solution V̌n of (5.26) is obtained
as the steady state of (5.27). The steady state is computed by advancing in pseudo-time τ
with a Runge–Kutta (RK) method.

5.2.9 Runge–Kutta methods

In this section, a short overview is given of the Runge–Kutta methods that are used for the
integration in pseudo-time. The notation is established8 and the principle of the stability
analysis carried out later on is described. For further information see (Hairer et al., 1993;
Hairer and Wanner, 1993).

A discrete solution for an ordinary differential equation (ODE) problem of the type

y′ = f (t, y), t ≥ 0, y(0) = y0 , (5.28)

at the time values tn is obtained with an explicit RK method by constructing from the
state yn at time tn a sequence of ν stages ξi, i = 1, . . . , ν, as

ξ1 = yn, ξi = yn + hRK

ν∑
j=1

ai j f (tn + c j hRK, ξ j) , (5.29)

with the real coefficients ai j and c j, j = 1, . . . , i − 1, and the time step length hRK. The
approximation for the next time level is then computed as

yn+1 = yn + hRK

ν∑
j=1

b j f (tn + c j hRK, ξ j) , (5.30)

with real coefficients b j, j = 1, . . . , ν. The coefficients of an explicit ν-stage RK method
are often represented in tabulated form as

c1 = 0 0
c2 a2,1 0
...

...
. . .

. . .

cν aν,1 . . . aν,ν−1 0
b1 . . . bν−1 bν .

(5.31)

7When deriving the pseudo-time integration, one might actually start from dU/dτ + dU/dt + ∂Fn̄/∂xn̄ = 0,
which would result in a mass matrix in front of the pseudo-time derivative.

8In particular, the indices used in this section do not follow the space-time notation used elsewhere. The
summation convention is not implied and the range of indices for RK stages is given explicitly.
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5.2 Discontinuous Galerkin discretization

The restriction to explicit RK methods ensures that the matrix A = (ai j) is strictly lower
triangular. The methods used in the DG context often have only one nonzero sub-diagonal
band. Such methods have the advantage that only one rather than several stages with
solution data needs to be stored.

In one of the used RK methods, a modification proposed by Melson et al. (1993) is
applied: For low values of the CFL number σ∆t = ∆t |v|/h, the Melson correction makes
the RK scheme point-implicit:

ξ1 = yn ,

(1 + ai(i−1)λ) ξi = yn + λ

 i−1∑
j=1

ai j f (tn + c j hRK, ξ j) + ai(i−1)ξi−1

 , i = 2, . . . , ν ,
(5.32)

where λ replaces the time step length hRK, as will be explained later. In this way, the
properties of the RK method are adapted better to the operator Le,n. The effect will be
demonstrated in the examination of stability properties of RK-methods.

Stability analysis of RK methods

To analyze the stability properties of a RK method, the right hand side of the ODE (5.28)
is taken to be f (t, y) = µy with µ ∈ �,<(µ) < 0, and the initial value y0 = 1. The solution
of this problem is y(t) = exp(µt), which for the chosen values of µ converges in time:
limt→∞ y(t) = 0. The analysis of the behavior of the RK method for this function yields
the linear stability domain D B {hRKµ ∈ � : limn→∞ yn = 0}, which is the set of parame-
ters hRKµ for which the asymptotic behavior of the discrete solution yn is correct. The setD
is determined numerically by computing the RK stages for a given initial value as

ξ1 = 1 , ξi =
yn + λµ

∑i−1
j=1 ai j ξ j + ai(i−1)λξi−1

1 + ai(i−1)λ
, i = 2, . . . , ν , (5.33)

and setting r(λµ) B |ξν|, the stability function of the RK method. All numbers z = hRKµ for
which |r(z)| < 1 belong to the stability domain. Results obtained by such evaluations of the
stability polynomial are shown in Figure 5.1 on page 85.

The examination of the stability of an ODE method for a linear system of m equations,
w′(t) = B(t) w(t) + g(t), with B(t) ∈ �m×m, can be carried out in terms of the eigenval-
ues µ j ∈ �, j = 1, . . . ,m, of B. Here the products hRKµ j have to lie within the stability
domainD of the RK method to ensure stability. For nonlinear operators stability results
are often hard to obtain. The practical approach—namely to consider the eigenvalue locus
of the locally linearized operator at the current state wn—gives meaningful information as
long as the operator is not too badly behaved, see (Hundsdorfer and Verwer, 2003, p. 47)
for a discussion.
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RK methods used for the pseudo-time integration

For convection-dominated flow, the five-stage fifth order EXI (explicit, for inviscid opera-
tor) Runge–Kutta method (van der Vegt and van der Ven, 2002b) is used together with the
Melson correction. The computation of the stages V̌ (i), i = 1, . . . , 5, using the coefficients
[a1; . . . ; a5] = [0.0791451; 0.163551; 0.283663; 0.5; 1.0] proceeds as (cf. Eq. (5.27))

V̌ (0) = V̌n−1 ,

(1 + aiλ)V̌ (i) = V̌ (0) + aiλ

(
V̌ (i−1) −

1
|K̄n

e |
P−1Ln(V̌ (i−1); V̌n−1)

)
, i = 1, . . . , 5 ,

(5.34)

where λ = ∆τ/∆t = σ∆t/σ∆τ incorporates the influence of the physical and pseudo-
time CFL numbers, σ∆t and σ∆τ = ∆τ |v|/h, respectively. In practice, a pseudo-time
CFL number σ∆τ is prescribed and used to locally deduce the pseudo-time step ∆τ,
see Section 5.2.10. The influence of the Melson correction on the stability domain is
documented in Figures 5.1a and 5.1b.

For diffusion-dominated flow, the EXV (explicit, for viscous operator) method by Klaij
et al. (2006a), a four-stage RK method optimized for the large extent of the eigenvalues
along the negative real axis (Kleb et al., 1999), cf. Figure 5.1c, is used. The coefficients
for this RK method are [a1; . . . ; a4] = [0.0178571; 0.0568106; 0.174513; 1.0]. No Melson
correction is applied in combination with the EXV method.

Finally, some tests were carried out with a nondiagonal RK method, RK44M, cf.
(Dormand, 1996; Westhuis, 2001), which is given in the tabular form of (5.31) as

0 0
2/5 2/5 0
3/5 −3/20 3/4 0
1 19/44 −15/44 10/11 0

11/72 25/72 25/72 11/72 ,

(5.35)

in an attempt to overcome specific problems of the incompressible case, cf. Section 5.3.3.
Its stability domain is shown in Figure 5.1d on the next page.

5.2.10 Application of the pseudo-time integration

Choice of the EXI RK or EXV RK method

The EXI and EXV methods introduced earlier have stability domains tailored to different
purposes. As the eigenvalue spectrum of Ln is not computed in standard simulations, an
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Figure 5.1: Stability domains of the examined Runge–Kutta methods. Plotted are the
isolines of |ξν|, cf. p. 83. The Melson correction applied in combination with the EXI
method stretches the stability domain of the RK method further into the imaginary half
plane, cf. (a) in comparison with (b). The EXV method in (c) is tailored to stiff operators
with eigenvalues concentrated along the negative real axis. The RK44M method in (d) is
investigated because its stability domain—unlike those of the other methods—includes a
part of the imaginary axis.

ad hoc criterion has to be used to decide which of the methods to use. For the current work,
the decision is based on the element Reynolds number,

Reel =
ρvmax h
ηmax

, (5.36)

85



Chapter 5 DG FEM for the Navier–Stokes equations

with the maximum signal velocity vmax, the element diameter h, and the maximum viscous
eigenvalue

ηmax =
max{γ/Pr, 4/3}

Reη
. (5.37)

When the element Reynolds number is lower than a prescribed value, typically Reel = 20,
then the EXV method is applied, otherwise the EXI method. For inviscid simulations, only
the EXI method is used. The same holds for incompressible cases for reasons that will be
discussed later. The RK44M method is only utilized for a case study, cf. Section 5.3.3.

Determining the pseudo-time step

The goal of the pseudo-time integration is to attain a steady state in pseudo-time, which
constitutes a solution of Eq. (5.26). To reach the steady state with a minimum of computa-
tional effort, the pseudo-time steps should be taken as large as possible, given the stability
constraints of the RK method that is used for the integration. One of the advantages of
this kind of solver is that the pseudo-time step ∆τ is a local quantity and can vary between
elements. As such, after deciding which RK method to use (see above), only the local
flow properties limit ∆τ, apart from the stability properties of the RK method. These are
imposed by limiting the pseudo-time CFL and von Neumann numbers,

σ∆τ =
vmax ∆τ

h
, δ∆τ =

ηmax ∆τ

h2 , (5.38)

respectively, by values determined by considering the eigenvalue spectrum of the Euler and
viscous operators in relation to the stability domain of the RK method. For the pseudo-time
CFL number σ∆τ and the Euler operator Le,n this analysis is the topic of Section 5.3, for
other combinations see (Klaij et al., 2006a).

For the RK update, the step length is taken as the minimum of the two values arising
from the limitations in (5.38),

∆τ = min
{
σ∆τ h
vmax

,
δ∆τ h2

ηmax

}
, (5.39)

and, finally, λ = ∆τ/∆t.

Role of the matrix P in the pseudo-time equation

It remains to explain the premultiplication of the pseudo-time derivative ∂V̌/∂τ with the
matrix P in Eq. (5.27). Although the augmentation of the system (5.26) with the pseudo-
time derivative is an artificial step and one could argue that it should work for any variable
set directly, it emerged that this is not necessarily true. In the original pseudo-time method,
the conservation variables U are related to the residual Ln(U) in the ODE system (5.27).

86



5.2 Discontinuous Galerkin discretization

If, however, the left hand side of the equations contains a different variable set, then the
system can become very stiff and hardly solvable, unless extremely small pseudo-time
steps are used. This effect, which occurs when the identity matrix P = I(d+2)×(d+2) is used,
can be undone by transforming to the conserved variable metric with P = AV

0 . As will be
shown in Section 5.3, for regular AV

0 the resulting system has the same properties as the
one for conservation variables. Unfortunately, the choice P = AV

0 is not well-defined in
the incompressible limit because then AV

0 is singular, independent of which variable set is
used. To be able to solve the system also for the case of incompressible fluids, Chorin’s
idea of artificial compressibility (Chorin, 1967) is applied in the matrix AV

0 , which has the
following functional form for entropy variables,

AV
0 = ρ

2T


βT βT v ̄ βT (h + k) − ααpT

βT vı̄v ̄ + αδı̄ ̄ [βT (h + k) − α(αpT − 1)]vı̄
sym. (h + k)[βT (h + k) − 2ααpT ] + α(cpT + 2k)

 , (5.40)

with ı̄, ̄ = 1, . . . , d, see Appendix A. It is easily seen that for an incompressible medium
(αp = βT = 0) the first row and column contain only zeros. To keep AV

0 regular, its top
left entry is set to a positive value ε in case of (near-) incompressibility. As no analysis
for the magnitude of this artificial compressibility-like parameter is available, its impact
is evaluated by numerical experiment, cf. Section 5.3.3. It should be emphasized that
the artificial compressibility is used only for the pseudo-time integration. Unlike the
direct application of the idea in the physical time derivative, the combination with the
pseudo-time variable allows to obtain a time accurate solution, see also (Soh and Goodrich,
1988). In practice, the incorporation of P in (5.27) requires a premultiplication of the
residual per element with P−1 or the solution of a (d + 2) × (d + 2) linear system with as
many right hand sides as the number of basis functions used on the element.

For pressure primitive variables Y , the approximation of the transformation matrix AY
0 ,

cf. Eq. (A.2), on page 138, takes the same route as for entropy variables. It is based on the
observation that when, for the moment, only the isobaric expansion coefficient is set to
zero, αp = 0, while retaining the isothermal compressibility βT , the inverse of this matrix,
AY,αp=0

0 , takes the form

(
AY,αp=0

0

)−1
=

1
ρ


1/βT (0) ̄ 0
−vı̄ δı̄ ̄ (0)ı̄

−(etot + p/ρ − v2
n)/cp −v ̄/cp 1/cp

 , (5.41)

in which the compressibility parameter βT occurs only once, in the top left entry. If βT is
bounded from below by a positive number ε, then the inverse of the resulting matrix AY,ε

0

exists and approximates the non-existent inverse of the singular matrix AY,αp=βT=0
0 , as can
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be seen by multiplication with the transformation matrix for the incompressible case,

AY,αp=βT=0
0 (AY,ε

0 )−1 =


0 (0) ̄ 0
−vı̄ δı̄ ̄ (0)ı̄

−etot + p/ρ (0) ̄ 1

 , (5.42)

(AY,ε
0 )−1 AY,αp=βT=0

0 =


0 (0) ̄ 0

(0)ı̄ δı̄ ̄ (0)ı̄
0 (0) ̄ 1

 . (5.43)

5.3 Stability analysis for the Euler operator

5.3.1 Description

One consequence of both the usage of a generalized variable set and the different equations
of state is that the stability properties of the discretization change compared to the standard
conservation variable/ideal gas case that is usually considered. Further investigation in
the stability proved necessary. The approach previously applied by Klaij et al. (2006a)—
considering a scalar linear advection-diffusion equation and deriving pertinent stability
bounds—could not be applied in the current work. The reason is that the numerical
method investigated here contains the extra transformation between the entropy or pressure
primitive variables and the conservative base set, which cannot be included in a single
advection-diffusion equation. Therefore, the complete discrete Euler operator Le,n from
Eq. (5.26) has been numerically linearized with respect to the expansion coefficients V̌n.
The base state is a two-dimensional subsonic homogeneous flow (with constant density and
temperature) diagonally over the domain Ω = [0; 1]2 with periodic boundary conditions in
both space directions. All computations were carried out on a mesh of 20 × 20 equal-sized
elements.

The eigenvalues of the linearized operator ∂Le,n/∂V̌n should be located in the stability
domainD of the RK method to ensure the stability of the pseudo-time integration. The
analysis of the spectrum of the matrix ∂Le,n/∂V̌ discloses two problems: first, the use of
other variable sets than the conservative variables affects the stiffness of the ODE system.
This is demonstrated in Section 5.3.2 based on the ideal gas. Second, incompressibility
causes the spectrum to concentrate along the imaginary axis. This issue is addressed in
Section 5.3.3.

5.3.2 Compressible media

Conservative variables

The first investigation aims at the spectrum of Le,n for an ideal gas, using conservative
variables U at the physical CFL numbers σ∆t = 1 and 100. In Figure 5.2 on the facing page,
the eigenvalues are plotted in the complex plane together with the stability domain of the
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(a) σ∆t = 1, σ∆τ = 1.9.
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(b) σ∆t = 100, σ∆τ = 1.3.

Figure 5.2: Eigenvalues (‘+’) of the linearized Euler operatorLe,n for two different physical
CFL numbers σ∆t. The convex hull of the spectra appears as dashed line; the stability
domain of the EXI method is plotted with solid lines indicating the damping factor. The
pseudo-time CFL number σ∆τ has been adapted to locate all eigenvalues inside the stability
domain of the EXI method.

EXI Runge–Kutta method defined in (5.34). The pseudo-time CFL number σ∆τ is chosen
such that the eigenvalues remain within the linear stability domain. Note the stretching
of the stability domain along the negative real axis in the low CFL number case due to
the Melson correction. This initial test serves to verify the results of Klaij et al. (2006a)
regarding the stability of the pseudo-time integration. Note that Klaij et al. obtained their
results by applying a DG discretization to the advection-diffusion equation and inserting
Fourier-modes, an entirely distinct approach from the one taken here. Nevertheless the
results are in the same range: where Klaij et al. gave the maximal pseudo-time CFL
numbers σ∆τ = 1.6 and 1.8 for the physical CFL numbers σ∆t = 1 and 100, respectively,
the current method yields σ∆τ = 1.9 and 1.3. For practical cases, the pseudo-time step has
to be limited more strictly owing to stronger nonlinearity and the presence of boundary
conditions; for applications as those in Section 5.4, the pseudo-time CFL number is chosen
in the range σ∆τ = 0.8 . . . 1.0. From now on, the discussion focuses on the effects of
introducing a different variable set. The analysis is conducted for the time-accurate case,
σ∆t = 1. The overall effects are the same for σ∆t = 100. For the most part, the discrete
expansions of all variables are limited to the constant basis function, pn,e

t = pn,e
s = 0, but a

comparison with higher order is given, too.

Pressure primitive and entropy variables with P = I(d+2)×(d+2)

As one of the goals here is to use a variable set that has a well-defined incompressible limit,
the discretization with pressure primitive and entropy variables is examined now. Initially,
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Figure 5.3: Eigenvalues for pressure primitive and entropy variables with P = I(d+2)×(d+2).
Note the different scales on both real and imaginary axes.

the nonlinear system is treated as if solving directly for the concerning set of unknowns,
hence P in Eq. (5.27) is set to P = I(d+2)×(d+2), the (d + 2) × (d + 2) identity matrix. The
spectra of the resulting Euler operators for the same values σ∆t = 1 and σ∆τ = 1.9 as before
are shown in Figure 5.3. Apparently, these are of little use for computational purposes: For
pressure primitive variables the spectrum extends into the (unstable) right half-plane. For
entropy variables, on the other hand, the eigenvalues stay in the left half plane, but extend
extremely far away from the origin, outside the stability domain of Runge–Kutta methods
for any reasonable pseudo-time step. Hereby the need for restoring the eigenvalue structure
of the operator in terms of conservation variables becomes evident. This is equivalent to
preconditioning with the inverse of the Jacobian of the transformation from entropy to
conservation variables.

Pressure primitive and entropy variables with P = AV
0

By using the Jacobian AV
0 = ∂U/∂V of the transformation U(V) as the ‘preconditioner’

matrix P, the same operator as in the conservation variable case should be recovered. This
is confirmed by the spectrum plotted in Figure 5.4a on the facing page. It is computed
using entropy variables with the residual transformation by (AV

0 )−1, and it coincides with
the eigenvalue structure for U-variables in Figure 5.2a on the previous page. For pressure
primitive variables the introduction of P = AY

0 leads to the same result (not shown).
Incidentally, Figure 5.4 shows a result for the eigenvalues when using bilinear basis

functions in space (pn,e
s = 1). It supports that the same bound for the pseudo-time CFL

number σ∆τ = 1.9 that originated from the analysis for constant representation per element
also holds for a second order accurate computation.
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s = 0, compare with Figure 5.2a on page 89.
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s = 1, i.e., four basis functions per element.

Figure 5.4: Eigenvalue spectra for the method using entropy variables V , but with restored
conservation variable metric, P = AV

0 . Comparison for different spatial representation
order.

5.3.3 Incompressible media

In Section 5.2.10, the singularity of AV
0 in the incompressible limit has been discussed,

along with a strategy how to avoid the resulting problems by introducing an artificial com-
pressibility-like parameter ε in the matrix. Generally, the eigenvalues of the incompressible
operator lie very close to the imaginary axis so that the pseudo-time step ∆τ is limited
primarily by the imaginary extent of the spectrum. When this is the case, the introduction
of the artificial compressibility parameter ε in AV

0 can help alleviate the stability restriction.
In Figure 5.5a on the following page, the convex hulls of the eigenvalue sets computed
with different values of ε are plotted. The pseudo-time CFL number σ∆τ = 0.016 is the
same for all shown sets. The figure substantiates that the extent in the imaginary direction
is decreased by approximately a factor of 3 when setting ε = 1 instead of ε = 0.001.
At ε = 1 the effect saturates and no further advantage is gained. For smaller values of ε
the eigenvalues spread out further along the imaginary axis. The introduction of ε does
not degrade the (time) accuracy, because it affects only the pseudo-time process and the
equations solved in physical time are still the original Euler equations. Figure 5.5b shows
the alternative Runge–Kutta method, RK44M introduced in Section 5.2.9, which may
help to overcome some of the problems caused by the proximity of the eigenvalues to the
imaginary axis. The stability domain of the EXI method only touches the imaginary axis
in the origin and then turns away from it, which leads to the predominant restriction in the
incompressible case. In contrast, the stability domain of RK44M runs along the imaginary
axis and even contains a small part of the right half plain. Thereby the eigenvalues are
contained in the stability domain even if they are very close to the imaginary axis. The
problem that the time step is limited by the extent along the imaginary axis, however,
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Figure 5.5: Examination of the eigenvalue spectrum of the Euler operator Le,n for entropy
variables with P = AV

0 and incompressible flow.

remains. Runge–Kutta methods that stretch out further in this direction typically have
more stages and are more expensive to compute (Hairer et al., 1993; Hairer and Wanner,
1993), so that no runtime advantage can be expected. Improvements hence should concern
the structure of the spectrum, but further research is necessary on this topic. The inviscid
test cases in Section 5.4 were all computed using the EXI method.

5.4 Numerical examples

The discontinuous Galerkin method described in this chapter has been implemented based
on the object-oriented framework hpGEM (cf. Chapter 6). To complete the inspection
of the numerical method and to verify the implementation, results of computations for
several flow problems are added. The main emphasis is to demonstrate applicability
for different media, e.g. compressible and incompressible fluids, when using entropy or
primitive variables. The discretization for the stationary test cases uses linear in space and
constant in time basis functions, unless stated otherwise. For the (supersonic) gas flows
preference is given to the HLLC flux. In the compressible/incompressible comparison, for
reasons discussed in Section 5.2.5, HLLC is replaced by the LLF flux. The ideal gas tests
assume the adiabatic index to be γ = 1.4. All computations are based on entropy variables
unless explicitly mentioned otherwise.

First, a series of inviscid test cases is presented, starting with an example concerning
low Mach-number flow through a channel with a bump, see Section 5.4.1. Supersonic flow
is the topic of the following two test cases, of which one uses an ideal gas, cf. Section 5.4.2
and the other one a non-ideal gas, see Section 5.4.3. In Section 5.4.4, results are provided
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for compressible and incompressible inviscid flow around a circular cylinder. Next, the
exact solution of the incompressible Navier–Stokes equations by Kovasznay is used to
assess the discretization of the viscous terms in Section 5.4.5. Viscous flow at different
Reynolds numbers is also considered in Section 5.4.6, where the efficiency of the iterative
solver is evaluated. Finally, in Section 5.4.7, some remarks are added about the relative
computational cost of using the different variable sets.

5.4.1 Ideal gas: channel with a bump

Subject of this test case is subsonic flow in a channel of unit width with a 10% circular
bump in the central third of the simulated length (Bijl and Wesseling, 1998). The grid
is boundary fitted with 63 × 22 cells. Results are given for the inflow Mach numbers
M∞ = 1.0 · 10−6, and M∞ = 0.5. At the inflow, entropy, stagnation enthalpy and the flow
angle are prescribed, while at the outflow only the pressure is specified (Darmofal et al.,
2000). Along the upper and lower channel wall, a slip flow boundary condition is used.

For subsonic flow, the Mach number fields should be symmetric with respect to the
middle of the channel (x1 = 1.5). This is confirmed by the results in Figure 5.6 on the next
page, with a small deviation for the higher inflow Mach number in the region downstream
of the bump. The plots show the same contour levels as used by Bijl and Wesseling (1998)
for this test case, and very good agreement with their results is observed.

5.4.2 Ideal gas: oblique shock

To give evidence of the capabilities of the developed method, a result for the supersonic
inviscid test from Section 4.5.3 is added. For the details of the setup see page 62.

The pressure field including the shock is plotted in Figure 5.7a on page 95. Note that no
discontinuity capturing or stabilization is used here, hence the overshoot close to the shock.
In this way, it is also reasonable to compare the results for different sets of variables, cf.
Figure 5.7b. Only minor differences are observed, after all the equations that are solved
are always the same set of conservation equations (2.14). The small differences that are
visible arise because of the differing discrete solutions when expanding in terms of the
various variable sets and due to the transformations between the conservative or entropy
variables and the plotted variable p. Independent of the variable set the location of the
shock is correctly represented, cf. (Hauke and Hughes, 1998).

5.4.3 Real gas: shock-tube problem

A particular instance of a real gas is the covolume gas, a vdW gas with a = 0, cf.
Section 2.7.2. Toro (1989) posed a shock-tube problem for such a medium with the
following initial data: left state ρL = 1, vL = 0, pL = 1, right state ρR = 0.125, vR = 0,
pR = 0.1, separated at x = 0.5, for a gas with the (unrealistically high) covolume b = 0.8,
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Figure 5.6: Mach number fields for two different inflow Mach numbers M∞ into a channel
with a 10% circular bump, computed on a grid with 63 × 22 elements and pn,e

s = 1.

cf. Eq. (2.34b) on page 23. The adiabatic index is γ = 1.4. It is well-known that the
performance of the LLF flux is inferior to Riemann-problem based methods on such test
cases. The HLLC flux is applicable to covolume gases and allows to obtain a result of
comparable quality as with more specialized methods.

This test highlights the wide applicability of the generalized variable formulation of
the Euler equations (here using V-variables) and the implementation. The solution of the
shock-tube problem for a covolume gas differs substantially from the ideal gas case, cf.
Figure 5.8 on page 96, which is reflected well by the numerical results.

5.4.4 Compressible and incompressible inviscid flow around a circular cylinder

This test case considers the flow of an ideal gas (subsonic) and an incompressible fluid
around a fixed circular cylinder with unit radius. The far-field flow is aligned with the
x1-axis, constant, and homogeneous: v∞ = u∞e1. In the limit of vanishing Mach number,
M∞ → 0, the flow field is given by the classical potential flow solution. Potential flow
denotes the idealization of a flow as inviscid, incompressible, and irrotational. Under these
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Figure 5.7: Numerical results for the oblique shock test case, computed on a 20 × 20 mesh
with pn,e

s = 1.

assumptions, the governing equations can be simplified considerably, which—for some
geometries—allows to find analytical solutions. When considering the Euler equations
the assumption of vanishing viscosity has already been made. An incompressible fluid
with zero vorticity at an instant will never generate vorticity but remain irrotational,
∇ × v = 0 ∀ x, t, and for low-speed compressible flows, density changes are small. Given
these conditions, it is reasonable to use an exact solution for a potential flow case as
reference for a method to numerically solve the Euler equations.

To conform to a previous study (van der Vegt and van der Ven, 2002a), the free-stream
Mach number of the ideal gas flow is chosen as M∞ = 0.38. At the outer boundary, the far-
field state p∞ = 4.945, v = v∞, T = 1, is prescribed as the external state of the numerical
flux. Due to the absence of viscosity in the Euler equations, a slip flow condition is applied
on the cylinder surface: v · n = 0. For compressible flow, the error of the numerical method
is indicated by the dimensionless total pressure loss π, defined as

π̃ B 1 −
p

p∞

 1 + 1
2 (γ − 1)M2

1 + 1
2 (γ − 1)M2

∞


γ
γ−1

. (5.44)

The total pressure loss should be zero everywhere (van der Vegt and van der Ven, 2002a),
deviations occur only due to the discrete approximation, which causes entropy production
at the cylinder surface. Cylinder flow is also a test case for numerical methods for
incompressible flow. The results are very similar to low Mach number compressible
computations.
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Figure 5.8: Shock-tube problem with covolume gas at t = 0.2, computed using a mesh
of 100 elements. Symbols: ◦: pn,e

s = 0, M: pn,e
s = 1, solid line: exact solution for covolume

gas, dashed line: exact solution without covolume, i.e., for an ideal gas; (a) pressure p,
(b) velocity v.

The pressure field (normalized by the far-field pressure p∞) and Mach contours for
M∞ = 0.38 according to a computation with entropy variables using four basis functions
per element on a mesh with 48 × 36 elements is shown in Figure 5.9 on the facing page.
Note that the plots show continuous fields which are obtained by averaging the solution
from neighboring elements in each node. The result should be contrasted with those
presented by Bassi and Rebay (1997b): without superparametric elements, higher order
discretization, and on a mesh with lower resolution than their 64 × 16 grid, it is possible to
compute a numerical solution without the substantial unsteady wake behind the cylinder.

Figure 5.9c on the next page shows the total pressure loss along the cylinder surface
for entropy variables using two different orders of the spatial representation (since this
is a steady state case pn,e

t = 0 on all elements). The result using bilinear polynomials per
element compares very well with the one obtained by van der Vegt and van der Ven (2002a)
on a linear isoparametric mesh of comparable resolution. Results for different variable
sets are hardly distinguishable in this test, so that the comparison is omitted. Repeating
the same test with an incompressible fluid yields almost symmetric fields about x1 = 0,
cf. Figure 5.10 on page 98.

5.4.5 Incompressible viscous test case: Kovasznay flow

To test the discretization of the viscous flow equations, one of the few exact solutions of the
two-dimensional incompressible Navier–Stokes equations is used here: Kovasznay flow. It
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Figure 5.9: Numerical results for the
flow of an ideal gas at M = 0.38 around
a circular cylinder of unit radius. The
computation uses entropy variables on
a 48 × 36 mesh that extends to the ra-
dius r = 56.5.

is frequently used to quantify the accuracy of numerical algorithms, see, e.g., (Cockburn
et al., 2002; Bassi et al., 2006; Mozolevski et al., 2007). The flow field is given by

pKov(x1, x2) = −
1
2

exp(2Λx1) +C , (5.45a)

uKov(x1, x2) = 1 − exp(Λx1) cos(2πx2) , (5.45b)

vKov(x1, x2) =
Λ

2π
exp(Λx1) sin(2πx2) , (5.45c)
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Figure 5.10: Incompressible and low Mach number flow around a circular cylinder.

with the arbitrary constant C and the parameter Λ given by

Λ =
Reη

2
−

√
Re2

η

4
+ 4π2 . (5.46)

The flow domain is taken as Ω = [−1/2; 3/2] × [0, 2] and the relevant components of the
exact solution are prescribed according to the incompressible in- and outflow conditions
on the boundaries. For this stationary solution, constant in time basis functions are used
and the spatial order is set to pn,e

s = 1. To confirm the convergence order of the numerical
method, the computation is repeated for a series of quadrilateral meshes with 4, 8, 16,
and 32 elements per spatial coordinate direction. Primitive variables are used for this case
and the energy equation is disregarded. The Reynolds number is chosen as Reη = 200 or
Reη = 1000. A fixed number of 104 pseudo-time steps is taken.

The numerical solution for Reη = 1000 obtained on the 16 × 16 mesh is shown in
Figure 5.11 together with spatial plots of the error. The error in the computed solution
seems to be mainly introduced by the boundary conditions, in particular in the pressure
field at the corner points of the domain. This coincides with the observed slow convergence
of the pressure field. A convergence study based on the L2(Ω)-error of the velocity field
(scaled by the domain size) is contained in Table 5.1 on page 100. It confirms the second
order accuracy when using bilinear basis functions.
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Figure 5.11: Numerical solution for Kovasznay flow (left) and the associated errors (right).
The results concern the 16 × 16 mesh.
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Figure 5.12: Viscous ideal gas flow around a circular cylinder at Reη = 40.
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Reη = 200 Reη = 1000
h ||v − vKov||L2(Ω) order ||v − vKov||L2(Ω) order

5.00 ·10−1 1.492 ·10−1 5.808 ·10−1

2.50 ·10−1 9.945 ·10−2 0.59 1.023 ·10−1 2.51
1.25 ·10−1 3.848 ·10−2 1.37 2.417 ·10−2 2.08
6.25 ·10−2 9.946 ·10−3 1.95 5.846 ·10−3 2.05

Table 5.1: Error of
the computed velocity
field for Kovasznay
flow with the Reynolds
numbers Reη = 200 and
Reη = 1000.

5.4.6 Compressible viscous flow around a circular cylinder

The flow around a circular cylinder considered in Section 5.4.4 also leads to interesting
results when viscous effects are included. In this case, the resulting flow pattern also
depends on the Reynolds number. At low Reynolds numbers, the main flow remains
steady, separating from the cylinder. In the region downstream of the cylinder a pair of
counter-rotating stationary vortices forms. For higher Reynolds numbers, the flow becomes
unsteady and periodic vortex shedding occurs.

The subsonic flow of an ideal gas at the free-stream Mach number M = 0.3 is considered.
The Reynolds number is set to Reη = 40 and the other dimensionless parameters are chosen
as in the inviscid test. The v1-velocity, streamlines and vorticity are plotted in Figure 5.12
on the preceding page. This result has been obtained by computing a single time step of
length ∆t = 109 on a mesh of 64 × 64 elements with ps = 1 and Y-variables. The flow
separation and the region with recirculating flow are clearly visible. The convergence
of the system residual (relative to the initial residual) during the pseudo-time integration
of the steady-state case is shown in Figure 5.13a on the next page. In the first twenty
solver iterations the residual decreases by approximately two orders of magnitude. Only
after a long period of stagnation can the pseudo-time iteration reduce the residual further,
presumably when the waves excited by the initial and boundary conditions have left
the domain. The slow convergence for high CFL numbers σ∆t can be attributed to the
eigenvalues of the operator being concentrated close to the imaginary axis, see Figure 5.2 on
page 89 for the basic effect. Here, σ∆t is much larger, which explains the slow convergence.

By contrast, in the time-dependent case the pseudo-time integration is much more
successful at reducing the residual. Figure 5.13b provides evidence for this claim: for a
time step of ∆t = 0.25, the residual is reduced faster and to a much larger extent than in the
steady-state case. The data stems from a simulation with the Reynolds number Reη = 200
on a mesh with 80 elements in the angular and 84 in the radial direction. For these settings
the figure compares the residual for all three variable sets, U, V , and Y . Conservation and
pressure primitive variables yield very similar results in this case. For entropy variables,
the initial residual is slightly smaller, but in the course of the pseudo-time integration its
reduction lags behind the reduction of the residual of other variable sets. In practice for
time-dependent cases a residual reduction of two orders of magnitude is required in each
time step. This goal is typically reached after about 100 iterations, so that the difference in
the long-term behavior—though strikingly large in this case—does not play a role.
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(a) Steady state problem for Reη = 40. The diagram
shows the residual convergence during the iterations
of the nonlinear solver using pressure primitive vari-
ables for a single time step with ∆t = 109.
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(b) Unsteady problem for Reη = 200. Comparison
of the typical residual convergence in pseudo-time
for a single physical time step with ∆t = 0.25 using
different variable sets.

Figure 5.13: Test case viscous ideal gas flow around a circular cylinder: residual conver-
gence during the pseudo-time integration.

5.4.7 Runtime comparison

Finally, an indication of the relative cost of using the different variable sets is given on the
basis of computations with the Euler equations. It is difficult to compare on the level of
a complete simulation as the magnitude and convergence of the residual Le,n(V), which
is used as stopping criterion for the pseudo-time integration, differs between variable
sets, and it is not clear how to compare residual levels. Errors may be amplified by
the discontinuous discretization, see Figure 5.7b, so that again an exact comparison is
hard to realize. What one can compare easily, however, is the cost per pseudo-time step,
unrelated to its effect on the convergence. For the Euler operator, when defining the cost
of a pseudo-time step using U-variables as 1.0, the relative cost of one step with pressure
primitive variables Y is approximately 1.0 . . . 1.1 and for entropy variables V it is in the
range 1.6 . . . 1.7. These are indications that depend on several details of the method, such
as the numerical flux, the Runge–Kutta method, the order of the expansion per element,
and the thermodynamical relations of the medium considered. Two contributions account
for the extra cost: First, the transformation that has to take place each time a specific set of
quantities is used, e.g. conservation variables and pressure in the flux evaluation. Second,
the residual transformation with P = AV

0 introduces additional effort.
The cost of pressure primitive variable computations is surprisingly low, a pseudo-time

step takes approximately the same time as one with conservative variables. Presumably,
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Chapter 5 DG FEM for the Navier–Stokes equations

this effect is rooted in the extra computations that are necessary also when conservative
variables are used (e.g., to obtain the pressure for the flux evaluation). The transformations
for pressure primitive variables are also comparably simple, mostly rational functions. For
entropy variables, by contrast, the variable transformations typically use more complex
functions (this depends on the thermodynamics of the medium of course). Furthermore,
in the software implementation, the residual transformation is realized as a linear system
solution for entropy variables, but as a direct multiplication of the residuals with (AY

0 )−1

for pressure primitive variables. This difference is rooted in the simpler structure of AY
0

and presumably accounts for a considerable part of the difference.
Ultimately, the consideration of the computational cost has to be combined with an

appraisal of the benefits of different variable sets, cf. Section 2.8. Entropy variables
constitute an interesting choice because of their theoretical properties while a consideration
solely based on computational efficiency suggests preferring pressure primitive variables.

5.5 Conclusions

A discontinuous Galerkin finite element discretization of the compressible Euler equations
(van der Vegt and van der Ven, 2002b) has been extended in two respects: First, the
viscous terms of the Navier–Stokes equations have been added using the interior penalty
approach. This addition allows to simulate processes involving compressible Newtonian
fluids. Second, by allowing to solve for generalized variable sets, the method has been
made more flexible regarding the accommodated thermodynamical fluid models. For this
step, some parts of the solution algorithm of the original method, which is only applicable
to (ideal) gases, had to be adapted. In particular the working of the pseudo-time stepping
method used to solve the nonlinear algebraic system of equations has been investigated;
with a residual transformation and exploiting an artificial compressibility-like idea, the
method is suitable for entropy and pressure primitive variables. For incompressible media,
the efficiency of the pseudo-time integration admittedly falls behind the expectations raised
by compressible applications. Hence, further work should aim at improving the efficiency
of the nonlinear solution step using a multigrid algorithm (van der Vegt and van der Ven,
2002b; Klaij et al., 2007). Alternatively, one might try to adapt the Newton method from
Chapter 4, though it will be more difficult to apply in more complex situations as the
envisaged flows with several fluids and free interfaces.

In principle, however, the simulation of various physical flow conditions is possible with
the presented algorithm. Rather than being limited to the typical gas dynamics regime, for
entropy and pressure primitive variables the low Mach number limit of the Navier–Stokes
equations is well-defined and even computing the flow of incompressible fluids is possible
as has been demonstrated by several numerical test cases originating from different fields in
compressible and incompressible fluid dynamics. Finally, an estimate of the difference in
the numerical cost incurred by the use of different variable sets has been given. Altogether,
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5.5 Conclusions

the findings allow a favorable cost-benefit evaluation for the usage of the generalized
variable formulation.

Entropy variables have been given specific consideration, because of their theoretically
appealing properties. In this respect, the numerical method developed in this chapter is on
par with the Galerkin least-squares FEM from Chapter 4. The advantage of the discontin-
uous Galerkin method lies in large part in its potential regarding (moving) unstructured
meshes. Also the straightforward implementation of many boundary conditions benefits
its application. At this stage, a positive result regarding the first two central questions
formulated in Chapter 1 has been achieved: The applicability for different media and
physical conditions has been combined with a discretization technique that makes available
the utmost of geometric flexibility. In combination with an interface tracking algorithm,
the numerical method discussed in this chapter is suitable to compute multiphase flow
taking into account the different thermodynamical properties of liquids and gases.
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Chapter 6

hpGEM – A software framework for
discontinuous Galerkin finite element methods

Wij zouden anders steeds van voren af aan
moeten beginnen en de continuïteit,
die een van de wezenskenmerken
van het leven der wetenschap is,
zou daarmee verloren gaan.

Jan Marius Romein (1893–1962),
In Opdracht van de Tijd

6.1 Introduction

The development of a finite element method for a given set of partial differential equations
is a complex task and typically implies the conversion of the mathematical method into a
computer program. It is notable that the mathematical formalization of FEMs is largely
independent of the specific application and that the same is valid for the resulting software.
This realization is at the heart of hpGEM, a framework for the implementation of finite
element methods, which is described in this chapter.

Focusing on discontinuous Galerkin methods, data structures and algorithms are pre-
sented that are common to many FEMs and their implementation as components of an
object-oriented framework is discussed. This framework facilitates and accelerates the
implementation of finite element programs, the assessment of algorithms, and their appli-
cation to real-world problems.

Given hpGEM, it remains to the applying scientist—starting from a correct mathematical
formulation of the discrete problem—to (i) assemble the provided components in a correct
and efficient way, and (ii) add whatever is special or unique to a considered problem or
algorithm. Obviously additions to the framework are possible when sufficient generality
and usefulness have been shown. However, it is not the goal of hpGEM to be a ‘solver’ for
a predefined type or set of equations. Rather it is intended to serve numerical scientists by
providing the geometric and functional concepts that occur in a worked-out weak form.
Concrete problems are solved by sample applications, but the actual hpGEM framework
concentrates on the general building blocks.
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This chapter contains and extends the material presented in (Pesch et al., 2007). The
ideas and requirements on which hpGEM is built are explained in Section 6.2. Software
design, implementation, and handling issues are touched upon in Section 6.3. The design
of a number of components of the framework is exemplified in Section 6.4 and case studies
from the implementation of the Navier–Stokes solver of Chapter 5 are added in Section 6.5.
Section 6.6 concludes the chapter and provides an outlook on the challenges for the further
development of hpGEM.

6.2 General ideas

Based on the considerations given in Section 1.4 of the introductory chapter and on
the presentation of two finite element methods in Chapters 4 and 5, the following basic
requirements for the software framework are formulated as follows:

• Ability to use discontinuous Galerkin methods.
These methods are a focus of current research. From Chapter 5 it follows that
some aspects make DG methods different from continuous finite element methods.
In particular the use of face-based data structures (e.g., for the computation of
numerical fluxes in systems of hyperbolic conservation laws) is different from
classical FEMs. On the other hand, some of these differences can be taken advantage
of, in particular in the form of increased concurrency in the computation of the
element-based discretization.

• General types of elements in �d, d = 1, . . . , 4.
Another advantage of DG methods is their flexibility with respect to the geometric
shape of the elements. For two-dimensional meshes, mixtures of triangles and
quadrilaterals can be as easily accommodated as three-dimensional meshes with
tetrahedra, pyramids, triangular prisms, and hexahedra. Applications of discontinu-
ous Galerkin methods on mixed meshes are presented in (Pesch et al., 2007). For
so-called space-time FEMs, one has to extend the elements with an extra dimension
for time, so for three-dimensional space the elements become four-dimensional.

• Dimension-independence of the code.
For many FE algorithms the mathematical formulation is independent of the dimen-
sion of the problem. To a large degree this property can be preserved by the software
environment. Application codes developed in a two-dimensional setting can fre-
quently be used for three-dimensional computations by changing a (C++-template-)
parameter, if the user’s code allows this, too.

• Easy and fast generation of applications.
When testing an algorithm the first question is how long it will take to correctly
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implement it. Hence it is important that provided components are easy to use and
well-documented.

• Parallelism handled internally.
While parallel computing is of prime importance for many relevant physical ap-
plications, it is a corollary of the previous item that the exploitation of parallel
computation strategies should be as far as possible handled internally, so that a
user program can remain largely unchanged for serial and parallel processing. The
realization of this requirement is still future work.

• Enforcement of quality standards.
To guarantee a correct and extensible FE framework, documentation is added both
in-code and externally. What has proven even more valuable is the test-suite built up
with the code. Unit tests check the correct working of individual classes, procedures,
and collaborative tasks (like computing normal vectors, evaluating integrals). The
unit tests can be re-run at any time, so that changes and additions to the framework
can immediately be assessed for correctness.

• Access to external software for common tasks.
Because the focus of hpGEM is on FE-related research, existing components for the
pre- and post-processing steps are used where possible, e.g., for mesh generation
and visualization. Also for linear algebra tasks, existing high-quality solutions can
be employed by the framework or made accessible to the user.

The above items constitute the most important requirements, yet the result of a search
for a matching candidate was that no available solution was satisfying. Clearly, failure
to comply with the first two items from the requirements list leads to the rejection of
many available FE packages. The other topics are more debatable, but collectively can be
of equal importance. This conclusion is briefly discussed by comparing a few available
software packages based on object-oriented development to the above list; the findings are
typical for many other FEM software artifacts, which are not reviewed here.

Discontinuous Galerkin methods, being a relatively recent topic, are not implemented
by most FE packages and their special aspects (e.g., face data structures) are not taken into
account. Packages which support discontinuous Galerkin methods are deal.II (Bangerth
et al., 2006) and DOLFIN (Hoffman and Logg, 2002). However, the former works only
on n-cubes, i.e., elements are lines, quadrilaterals, and hexahedra in dimension 1, 2, and
3, respectively. The latter, just like other packages, e.g. ALBERTA (Schmidt and Siebert,
2006), restricts itself to simplices, so that meshes consist of triangular or tetrahedral
elements. Mixed meshes are rarely accommodated by existing FE software, possibly
because of the complications when using continuous FEMs. No package could be found
that offers support for space-time discretizations, elements are implemented only for
dimensions one to three. Within these bounds, codes based on deal.II or ALBERTA
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can be dimension-independent for meshes based exclusively on n-cubes or simplices,
respectively.

Different philosophies become apparent when it comes to the application program
interface (API) available to the users of a software framework. In some packages, e.g.
DOLFIN, high-level access is provided to a degree that modules allow the solution of pre-
programmed equations by choosing the geometry, suitable initial and boundary conditions.

The access to external software in the compared packages is—if at all provided—fre-
quently hidden by extensive interfaces. This has the advantage of unified access to different
packages, which, however, comes at high development cost and possibly restricts the range
of usable options of the integrated packages. Remarkably, some FE packages rely entirely
on their own developments regarding linear algebra and equation solvers.

Efforts regarding the quality measures mentioned previously vary; online documentation
for the abovementioned packages is available, sometimes also detailed tutorials, e.g. for
deal.II, which also seems to be most advanced regarding its test suite.

6.3 Choice of programming paradigm and language

When dealing with FEMs, an advantageous aspect of their structure is the way in which
mathematical and geometrical concepts emerge and work together. It is beneficial in
several ways to preserve this structure when creating a finite element software environment:
First, the accessibility of the software framework for users with mainly mathematical
background knowledge is improved; having worked out a FE formulation in mathematical
terms, the translation into computer code is simplified if the same concepts are used to
build up the code as for the analytical formulation. Second, software artifacts representing
the general concepts of finite element algorithms have a high potential of reuse. A typical
one-off FE application code tries to use as many simplifications as the structure of the
problem at hand allows. Consequently, the resulting code does not reflect the abstract
mathematical concepts any more. The latter, however, are the general building blocks
for many formulations and hence providing them increases the re-usability. The clear-cut
entities in FEMs can be preserved well by an object-oriented (OO) programming model.

6.3.1 Object-oriented development and programming

Object-oriented design (OOD) emphasizes analysing the problem domain in terms of
“objects”, building class hierarchies exploiting inheritance and polymorphism, increasing
modularity by encapsulating data, and making objects communicate with each other
through messages (Barton and Nackman, 1994; Wikipedia, 2007). These notions are
(sometimes incompletely) provided by computer languages with support for object-oriented
programming (OOP). To aid the modeling and design process, earlier techniques by
Rumbaugh et al. (1991) and Booch (1994) have been combined in the Unified Modeling
Language (UML), “a visual language for specifying, constructing, and documenting the

108



6.3 Choice of programming paradigm and language

artifacts of systems” (Object Management Group, 2007). In many fields, the combination
of OOD and OOP has superseded the traditional procedural programming paradigm.

A disadvantage of the object-oriented approach lies in the runtime overhead that may
be incurred by the introduction of higher-level software constructs. Representing the
general concepts of FEMs with an object-oriented language reduces the possibilities to
apply structural, problem-dependent optimization and introduces overhead for the object
handling. However this effect on the runtime has to be contrasted with the greater ease of
familiarization and development with the software framework: The time savings thanks to
faster application development compensate for the computational overhead.

Software design patterns

In object-oriented programming, the focus of the software generation task shifts from
coding to designing, i.e., analyzing the problem domain and working out the concepts and
entities and their interactions. Finally, these are implemented as software artifacts. Even
more than the reuse of code, the reutilization of design can save considerable effort. This
realization is at the heart of design patterns, i.e., “descriptions of communicating objects
and classes that are customized to solve a general design problem in a particular context”
(Gamma et al., 1994).

Such patterns are used in many instances in hpGEM, some of which will be described
in the sequel. While patterns constitute elegant reusable solutions and their scope would
allow an even broader application, on various occasions their usage has been avoided.
The reason is the dependence of many patterns on polymorphism and inheritance (with
abstract bases). The consequence, namely indirect (virtual) function dispatch, adds a
level of indirection to every member function call. In computing-intensive applications,
such as scientific computing, the additional overhead, e.g. for very frequently called
(innermost loop) functions, may be prohibitive. For example, hpGEM does not provide
polymorphic Element or Face classes (the latter might be used to implement different
boundary conditions) to avoid the extra complexity. In such circumstances, patterns
that could help to reuse available solutions (e.g., the patterns adapter and decorator) are
not adopted. In this case, either the available solution has to fit directly or it must be
re-implemented to avoid an unnecessary performance degradation.

Decisions about these issues are partly subjective; at larger scale, the same structural
patterns may be very useful, e.g. to integrate several (libraries of) equation solvers in a
consistent way. Also, there are problems which inherently have a structure that is modeled
by one of the patterns and cannot be simplified. For example an implementation of meshes
with local refinement might exploit the composite pattern (at least to achieve part of the
necessary functionality), and the basic problem cannot be solved with a completely different
approach because the problem just has the structure and complexity of a composite.
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6.3.2 Choice of the programming language

Having chosen the object-oriented development model, the programming language is
the next item to select. In recent years, with the growing acceptance of object-oriented
techniques also in the scientific programming world, C++ has been the language of choice
for many developments. Reasons that suggest committing to this language include:

• C++ not only is a full-fledged object-oriented language, but also supports program-
ming in procedural style and with elementary constructs, like loops. The latter fact is
particularly beneficial for scientific computing where the nature and amount of data
requires such constructs and their execution at close to machine speed. Furthermore,
the overhead to get users without experience in object-oriented programming started
with hpGEM is reduced by the availability of these more traditional concepts.

• C++ enforces strong type checking, which leads to an unambiguous API and enables
one to find many logical errors at compile time.

• Aspects of generic programming are included in C++, most notably in the form of
templates. In the scientific computing context, templates are also used to improve
runtime performance, cf. (Veldhuizen, 1995), for classical examples. The usage of
templates is reconsidered at the end of this section.

• C++ is a widely available, standardized, well-known, current language. These
properties make the language a solid foundation to build on: standard-compliant
code is guaranteed to run on a wide range of platforms with several available
compilers. Its widespread use, not only in scientific computing, means that support
for C++ will not cease on the foreseeable timescale of the project, that there are
qualified scientists to contribute to the project, and vice versa that expertise gained
in the project is of wider relevance as well. Last but not least, C++ is one of the most
supported languages when it comes to techniques and tools for software engineering,
which can significantly contribute to the success of a project.

A possible alternative in the language decision would have been Fortran 90/95, which is
still widely used for scientific computing. However, Fortran cannot match with C++ on the
above list of qualities. In the versions for which compilers are currently available, Fortran
incompletely supports object-oriented programming and lacks some more evolved object-
oriented features of C++ (e.g., multiple inheritance). The basic data type of Fortran—on
which it admittedly outperforms most other languages—is the array, but less structured
types as they are for example readily provided by the C++-Standard Template Library (STL)
containers are not offered, and generic programming support as through C++-templates
is not present in the language. Obviously it would not be necessary to limit oneself to a
single programming language, as linking object files generated from several languages is a
viable option. While it is possible to use external software packages programmed in other
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languages, the development of hpGEM itself takes place in C++ only, as mixed language
programming would potentially decrease portability and increase the complexity for the
developers.

Of course, choosing C++ means making a compromise that includes disadvantages,
too. The absence of many services and data structures (like arrays) from the language is
obstructive and has to be compensated by libraries. With the advent of relevant libraries
the functional range matches up with other languages, but because of the inclusion model
for header files there is an increase in compilation time overhead. The overhead is often
subject of complaint when the code relies heavily on templates. As mentioned above,
templates are frequently used not only to achieve generality through static polymorphism
but also to improve performance through compile time code expansion. While the C++
standard includes explicit instantiation as a means to avoid the overhead of the inclusion
model for template definitions, this can most frequently not be used for the purposes above
because the template arguments are not determined by the library but rather by the user’s
code. As a simple example, the class template

template <DimType dim> class PhysSpacePoint <dim>;

would be suitable for explicit instantiation since the parameter dim, which gives the
dimension of the physical problem space, is (practically) restricted to the range 1, . . . , 4.
On the other hand, a construct like

template <class UserData > class DataOnElements;

cannot be instantiated at the build time of the hpGEM library, as its argument, namely
the class that includes all data that is stored for each element, is problem dependent and
hence given by the user. The latter case is, unfortunately, far more typical of the code of
the hpGEM framework, which relies heavily on templates. Furthermore, Vandevoorde and
Josuttis (2003) point out their experience from large projects, which suggests that explicit
instantiation becomes hard to manage. Hence, up to now, explicit instantiation has not
been used in the hpGEM framework; the size of the code base and the currently available
computing power keep the compilation times in a tolerable range.

An aspect that should be mentioned—though it concerns the object-oriented approach
rather than the choice of C++ as the programming language—is that thinking in an object-
oriented way is a skill that requires learning and experience. It often takes considerable
time to adapt new users to this thinking and programming style, as it is fundamentally
different from traditional programming paradigms frequently taught to students—even if
C++ is used for that purpose. Hence the education of students and researchers with regard
to C++, object-oriented software development, and hpGEM itself plays an important role
for the future prospects of the framework.
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6.4 Problem domain setup

The hpGEM framework is organized in several C++-namespaces which contain software
artifacts that belong together. This section gives a bird’s-eye view of the partitioning. For
each namespace, a few highlights are presented in more detail. Additional information can
be found in the in-code documentation of the hpGEM source (hpGEM).

6.4.1 Namespace Base

Although the namespaces are not layered, Base contains functions and data structures that
are used by entities from all namespaces. An example are implementations of fixed- and
variable-sized arrays. Base provides associated functions, for instance to compute several
norms and the standard determinant, too. These components are also accessible to the
user. More complex tasks implemented within this namespace include the projection of
initial data on the function space defined by a FE mesh and the basis functions. Two data
structures of particular importance to almost any user code are described next.

User data storage: DataOnElements and DataOnFaces

The class templates

template <class DataType > class DataOnElements;
template <class DataType > class DataOnFaces;

provide containers that accommodate (the user’s) data sets for each element and face. The
data necessary on each element usually includes at least the expansion coefficients of
the solution and/or the residual with respect to a basis. Additionally, other parameters
can be stored, for instance method-specific geometric quantities, intermediate results that
are needed again and would be costly to recompute, or—in a multifluid simulation—
the information which fluid is occupying the element’s space domain. It is part of the
philosophy of hpGEM to leave the definition of this class to the user. If specific framework
services are used, e.g., the projection of the initial condition on a given basis, then parts of
the user class interface have to adhere to rules set out by the package design, for example
by offering specific member functions or type declarations (typedefs). The element and
face data containers are also used internally by hpGEM, namely to cache some geometry
information that would otherwise have to be recomputed frequently, cf. Section 6.4.4.

Basis functions and expansions

As there is no global continuity requirement in DG FEMs, the reference space basis
functions may be the same for all reference geometries. This is exploited by the tools that
hpGEM provides for defining and evaluating (DG) basis functions and expansions in terms
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of them. A sequence of basis functions ψ̂ j (for d = 3) is defined as a sequence of class
template specializations in terms of an integer argument:1

const DimType dim = 3; // (space-time) dimension

typedef RefSpacePoint <dim> RSP; // type abbreviation

template <unsigned int i> struct PsiHat;

template <> struct PsiHat <0>{ // constant basis function

enum { LastFunctionIndex = 4 };
static NumType eval(const RSP&){ return 1.; }
static NumType evalDeriv0(const RSP&){ return 0.; };
static NumType evalDeriv1(const RSP&){ return 0.; };
static NumType evalDeriv2(const RSP&){ return 0.; };

};

template <> struct PsiHat <1>{ // 1st linear basis function

static inline NumType eval(const RSP& p){ return p[0]; }
static inline NumType evalDeriv0(const RSP&){ return 1.; };
static inline NumType evalDeriv1(const RSP&){ return 0.; };
static inline NumType evalDeriv2(const RSP&){ return 0.; };

};

// Etc., implement function and derivatives for indices up to

// four - as indicated by LastFunctionIndex.

The following declarations make this basis known to hpGEM:

typedef Expansion <dim, PsiHat> ExpansionDefs; // (1)

typedef ExpansionDefs::ServerType BasisExpServer; // (2)

BasisExpServer::InitializeFunctionPointerArrays(); // (3)

typedef ExpansionDefs::ExpansionType ExpansionType; // (4)

(1) By fixing the problem dimension and the basis functions, ExpansionDefs yields a
shortcut for the expansion-related definitions that follow.

(2) The type BasisExpServer names the class that internally evaluates expansions.

(3) The evaluation of expansions is achieved by different functions, depending on the
current length of the expansion, i.e., the number of basis functions used. These
evaluation functions are generated by template meta-programming, and a pointer to
each function is stored internally by the BasisExpServer. The initialization of the
pointer fields has to be induced with this statement.

1In the code fragments included in this chapter, full scoping is usually avoided, e.g. Geometry::DimType dim
is abbreviated as DimType dim to keep the listings simple.
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(4) Another abbreviation names the type of the actual expansions in terms of the basis
PsiHat. Subsequently, expansion variables can be defined in terms of the basis
functions as

ExpansionType expansion;

Objects of type ExpansionType can be queried directly at a RefSpacePoint<dim> pRef
(cf. namespace Geometry) in the reference element, as

NumType valueOfExpansion;

expansion(pRef, valueOfExpansion);

The advantage of ExpansionType is that state evaluation is carried out internally and
efficiently: As each instance of ExpansionType carries information about the number
of currently used basis functions, the address of the corresponding evaluation function
for this expansion length is retrieved, and with one call to that function the complete
expansion is evaluated. In particular this avoids further function calls to the individual
PsiHat member functions. The instantiation of the evaluation functions relies on template
meta-programming techniques (Veldhuizen, 1995), which make it possible to expand the
linear combination at compile time, making it available to the optimization tools of the
compiler, too.

However, the machinery explained above depends on the element-independence of the
basis functions. This is special to DG methods, and even for these it is not universal:
Besides the reference element DG basis functions ψ̂ j, van der Vegt and van der Ven
(2002b), for example, use a second set of basis functions

ψ̂′j(t, x̄) =

1 , for i = 0,
ψ̂ j(t, x̄) − 1

|K̄
n,−
e |

∫
K̄

n,−
e
ψ̂ j((Gn

e)−1(tn, x̄′)) dK̄ , otherwise,

to separate the mean and slope on the physical element, which is essential for both their
stabilization and multigrid methods. Cockburn et al. (2000) describe a hierarchical tensor-
type basis with different basis functions for the different element reference geometries.
Finally, of course, for continuous Galerkin methods, the basis functions—though not
element-dependent—have to be matched with the global degrees of freedom, thus requiring
extra information. These examples testify that hpGEM will need another model for bases.
Beyond the features needed for the previous three examples, such a model should allow
caching the function and derivative values at a set of points in the (reference) element.
Because of the complications involved in this undertaking (several rules with different
integration points may be used, different bases on different elements, integration on both
faces and elements, etc.), it has not been tackled yet.
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6.4.2 Namespace Geometry

In Chapter 3, several geometric concepts were introduced that occur in FE formulations.
Many of them have direct counterparts in hpGEM, as will be shown next. In particular
the Elements,2 their ReferenceGeometry, which simplifies the definition of basis func-
tions and the integration with quadrature rules, cf. Appendix B, and the Faces. More
fundamentally, the FE Mesh is defined by the positions of a set of nodes in physical space
and the connectivity of these nodes to yield elements and faces. The setup of such a
mesh is a complex task, but this step is hardly connected to the equations solved or the
FE method. hpGEM encapsulates mesh setup as a complete service provided by the
framework. With a few commands that concern the origin and type, the user obtains
the mesh and the framework is ready to work with it. Similar services are provided by
other FE packages, as described in Section 6.2, but hpGEM differs from them in that it
takes dimension-independent programming to the full, even on unstructured meshes. The
commands

Mesh<dim> theMesh;

CentaurMeshFileReader <dim> Reader("mesh.hyb", theMesh);

read the file mesh.hyb generated by the Centaur mesh generator (Centaursoft, 2005), in
particular unstructured meshes with mixtures of the possible element geometries: triangles
and quadrilaterals when dim is two, and tetrahedra, pyramids, triangular prisms, and
hexahedra in three-dimensional meshes. The elements and faces, including the appropri-
ate geometry description—consisting of a reference geometry, the physical coordinates
and a corresponding mapping—are generated automatically by suitable factory methods,
cf. (Gamma et al., 1994). The boundary faces are typically provided by the mesh generator.
On the other hand, the internal faces, which are required by DG FEMs, are not. Hence
hpGEM provides a general algorithm to generate them. The work flow of the generation
of the FE mesh representation in hpGEM is illustrated in Figure 6.1 on the next page.

All information is collected in a Mesh object, whose most prominent task is to pro-
vide iterator-like access to the element and face containers. Since most meshes in
practice are unstructured,3 no access other than iterators is provided. Consequently,
a rectangular 8 × 8 mesh on the unit square generated with an instance of the hpGEM
RectangularMeshGenerator class by

PhysSpacePoint <2> p1; p1[0] = p1[1] = 0.; // lower left

PhysSpacePoint <2> p2; p2[0] = p2[1] = 1.; // upper right

unsigned int nrOfEl[] = { 8, 8 }; // 8x8 elements

RectangularMeshGenerator <2> rmg(p1, p2, nrOfEl, theMesh ,...);

2In this context, ‘element’ refers only to the part of the domain, not the triptych as, e.g., in the definition by
Ciarlet (1978).

3Meshes are considered unstructured if there is no (global) rule to identify neighbors, i.e., neighborship
information has to be stored locally. For DG algorithms this typically happens on the face.
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Figure 6.1: UML sequence diagram of the setup of a mesh. In the example of generating a
rectangular mesh, the user-induced actions in the diagram correspond to the following program code:

Mesh<2> mesh; // (1)

ElementFactory <2> eFactory(mesh); // (2)

FaceFactory <2> fFactory(mesh); // (3)

RectangularMeshGenerator <2> rmg(..., mesh, // (4)

eFactory , fFactory);

rmg.getMesh(); // (5)

fFactory.generateFaceList(); // (11)

(Some constructor arguments have been omitted in the declaration of the
RectangularMeshGenerator<2>, see the example on page 115.) The internal function
calls deliver the physical space nodes (6) from the mesh provider to the mesh data structure. The
nodes are numbered and based on this enumeration, each instance of ElementDescriptor contains
the ordered sequence of global node numbers defining one element (7). The element is produced by
the element factory with its reference and physical geometry and the mapping between the two, and
sent to the mesh (8). The boundary faces are normally delivered by the mesh generator, too, and a
similar procedure applies (9,10). The internal faces are generated by hpGEM after a call from the
user code (11,12).
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does not have access by element coordinates (i,j). The generality of the approach with
iterators is preferred: By exchanging the few code lines shown above for generating a
rectangular mesh with those used earlier for reading a file from an (unstructured) mesh
generator, the iterator-based program can work on any mesh in any dimension, while the
version with indices or other direct access cannot.

Further services implemented by hpGEM as mesh processing steps are methods to

1. apply transformations to the nodes of a mesh,

2. make a mesh periodic,

3. add a (time) dimension to the given space coordinates.

The first two enable to adapt meshes to special geometries, e.g. a mesh on a cube can
be used to discretize a torus. The last feature is needed for space-time DG methods, in
which the space and time discretization are carried out in one step (rather than discretizing
space and time separately), see Chapter 5 and (van der Vegt and van der Ven, 2002b). The
communication between all mesh generation-related objects takes place through abstract
interfaces in a sender-receiver pattern, so that the above tools may be combined in a chain.

To conclude, the philosophy of hpGEM regarding the geometry setup is to provide
front-ends to mesh sources, in particular (commercial) mesh generators, encapsulate the
geometry information generation, and provide simple but universal means for unstructured
mesh usage.

6.4.3 Namespace GlobalAssembly

As has been mentioned in Section 6.3.2, the hpGEM framework does not dictate the
number or type of variables per element and not their mathematical connection either.
Consequently, the concrete handling of the data—like initialization, reading it out, or
updating—has to be carried out by the user’s code. Nevertheless, many algorithms can
be encapsulated in and provided by hpGEM, if they are designed around such handling
methods, e.g. by using the template method pattern by Gamma et al. (1994).

For example, a typical step in a finite element computation is the assembly of the
matrix of a linear system of equations. This step is usually subdivided into computing a
contribution locally on each element and subsequently sorting these local contributions
into the global matrix.4 In this case, the computation of the local matrix has to be done by
the user (using other tools provided by hpGEM), but the sorting into the global matrix can
be left to the routines provided in namespace GlobalAssembly, as the necessary links to
element or degree of freedom bookkeeping are anyway handled by the geometry classes.

4The first of these steps is completely local and easily parallelizable. The second, in contrast, is not, as—
depending on the FEM—the mapping to global matrix entries is not injective. Parallel programming paradigms
like semaphores, however, allow to execute also this part of the assembly in parallel.
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Some of the tools provided by the GlobalAssembly components can be demonstrated
by example of the discontinuous Galerkin discretization of the Poisson equation −∇2φ = f
by van der Vegt and Tomar (2005). In this method, the assembly of a global linear
equation system is necessary because the discretization uses lifting operators on the faces
to discretize the Laplace operator. Assuming that an instance mesh of type Mesh<dim>
and a DataOnElements<UserData> container elData have been defined, the program
sequence that represents the assembly is

const unsigned int nDOF = countGlobalNrOfDOF(mesh, cDOF);// (1)
GlobMat A(nDOF, nDOF); GlobVec x(nDOF), b(nDOF); // (2)

GlobalLapackMatrixSorter <ElementIDType > sorter(A, x, b); // (3)

assembleElementContributions(mesh, // (4)

CalcElContrib <dim>(elData),

sorter);

assembleFaceContributions(mesh, // (5)

CalcFaceContrib <dim>(UserData),

sorter);

lapack::gesv(A, b); x=b; // (6)

sortSolutionBack(mesh, // (7)

Solution2ElementData <dim>(UserData),

sorter);

The call in line (1) of the example determines the number of degrees of freedom of the
discrete problem. It requires a function or functor cDOF that can evaluate the number
of degrees of freedom on a single element. This functionality must be implemented by
the user; it is rather trivial, so that a sample implementation is omitted here. Based on
the number of degrees of freedom in the linear system, the matrix A, the right hand side
vector b, and the solution vector x are declared in (2). These linear system components
are passed to hpGEM’s GlobalLapackMatrixSorter (3), which provides a front-end
to the global system and internally handles the mapping from local degrees of freedom
per element to the global matrix entries. The calls to assembleElementContributions
and assembleFaceContributions in (4) and (5), respectively, initiate the actual assem-
bly procedure. They rely on the user’s implementation of the computation of the local
contribution per element and face in the functors CalcElContrib<dim> and CalcFace-
Contrib<dim>. An example for the element term will be sketched after the completion of
the discussion of the above code fragment. In (6), the global system of equations A x = b
is solved with the help of the Lapack (Anderson et al., 1999) routine GESV, accessed
through the boost-bindings (boost C++ libraries). Finally, the solution has to be mapped
back from the mere vector entries in x to the expansion coefficients of the finite element
data, which happens in (7).

The example documents well how the framework code and the user’s implementations
of algorithm- and equation-specific parts work together. To complete the discussion of the
global assembly, the explanation of one of the user-implemented parts is added. For the
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Poisson equation, the right hand side vector contains the L2-inner product of the function f
with each of the basis functions ψ̂ j. The computation of this contribution is one part of
the functor CalcElContrib<dim>, whose operator() is called by the hpGEM function
assembleElementContributions:

void operator()(const Element<dim>& el,
ElementLocalSystemAcceptor <ElementIDType >& eAcceptor)

{

LocalRHSType r; r.resize(nDOFlocal); r.clear(); // (1)

for (int j = 0; j < nDOFlocal; ++j)
integrateOverElement(..., r(j)); // (2)

eAcceptor.assembleElementLocalRHS(el.id(), r, add); // (3)

// Element contribution to global matrix A computed here

// and passed to eAcceptor.assembleElementLocalMatrix().

}

The operator takes a reference el to the Element<dim> instance for which the contribution
is expected and an ElementLocalSystemAcceptor, which organizes the local contribu-
tions into a global system (in the previous code example on the facing page this role is
fulfilled by the GlobalLapackMatrixSorter). The vector r is declared in (1) with as
many components as basis functions are used in the local expansion on the element (which
may vary between elements but is available through the reference to el). It stores the
results of the integration of the product of f and the basis function ψ̂ j in (2). The call syntax
for the integration is described on page 123 in the section about the integration framework
of hpGEM, and thus omitted in the example. In (3), the user code in turn invokes a member
function of the ElementLocalSystemAcceptor to add the local contribution from r to
the right hand side vector of the global system. The collaboration between the different
entities and the call sequence of the element assembly are also documented in Figure 6.2
on the next page.

Notably, the above code neither depends on the dimension nor on the reference geometry
of the element. This matches with the independence of the DG discretization of both prop-
erties. In (Pesch et al., 2007), numerical examples are given based on a two-dimensional
mesh with a mixture of triangular and quadrilateral elements and for a cubic mesh in three
dimensions. Both are produced with the same implementation, from which the above code
fragments originate.

6.4.4 Namespace Integration

Due to the nature of finite element methods, their fine-grain building blocks are integrals
over elements and faces, cf. Chapter 5. Integration is linked to several other concept areas,
e.g. the different reference geometries in a mesh (like triangles and quadrilaterals in two
dimensions, cf. Table 3.1 on page 41), algorithm-specific details (like the actual choice of
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Figure 6.2: UML sequence diagram of the element part of the global assembly process.
The figure shows how the user’s code and the framework services intertwine. The user-
provided entities and calls are shaded in gray. On being called by the user code (1), the
hpGEM function assembleElementContributions takes care that the destination data
structure is notified of the start and end of the assembly operation (2,6). The main task
is the computation of the element local system contributions, which is delegated to the
user’s function/functor (3). From there, the user passes the local matrix (4) and right hand
side (5) blocks to the data structure that is responsible for the mapping from local to global
degrees of freedom and for administrating the global system of equations. See also the
code fragment on the previous page.

an integration rule depending on various factors specific to the method), and the variety of
mathematical objects to be integrated (e.g., scalars, vector fields). Therefore integration
has been one of the complicated design challenges, with the flexibility of the integration
interface being a prerequisite for usability in various contexts.

While some of the integrals may be computable exactly (when the integrand is of
simple analytical form), usually they are evaluated by numerical quadrature. In hpGEM,
integration is based on the application of quadrature rules, i.e., a weighted sum of integrand
evaluations at a set of points on the reference shape is computed, cf. Figure 6.3 on the next
page. The function call to compute an element integral takes a reference to the element
over which to integrate, (optionally) the Gauß integration rule to be used, the function to
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of points x̂k with weights αk. The transformations are taken care of by the integration
framework of hpGEM, and so is the computation of the Jacobian of the mapping.

integrate and a reference for the result storage:

integrateOverElement(element, quadRule, integrand , result);

The transformation between reference and physical space takes place automatically by
also evaluating the Jacobian of the transformation. Quadrature rules of order up to at least
seven for all supported reference geometries (cf. Section 3.2) have been implemented
based on (Stroud, 1971). Since every integration rule is for a fixed dimension, they can
be compiled once into a library, unlike C++ class templates, whose definition has to be
available at compile time of the application. In fact, also the code for the integration rules
is generated only for the preparation of the library. The code generation uses a simple
description format, in which, for example, the first order integration rule on the [−1; 1]
reference line is given as

GaussRuleFromPoints C1d(

"Cn1_1_1", // name; cf. Stroud (1971)

"centroid formula 1d", // explanation

"ReferenceLine", // reference geometry

1); // order

C1d.addIntegrationPoint("2.0 [ 0.0 ]"); // weight&coordinate

Product rules can be constructed simply by giving the two lower-dimensional input rules:

GaussRuleProduct Cn2_1_1(

"Cn2_1_1", // name; cf. Stroud (1971)

"centroid formula 2d", // explanation

"ReferenceSquare", // reference geometry

&Cn1_1_1, // rule for first dimension

&Cn1_1_1, // rule in other dimension(s)

1); // order
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chosen for current element by
an IntegrationRuleCriterion
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highest order available for
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is not passed to
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GaussIntegrationRule

Figure 6.4: Different ways to choose the numerical integration rule for computing an
integral.

The code generation makes it easy to extend the set of integration rules without having to
understand the details of how the rules are implemented. This includes that each rule is a
singleton (Gamma et al., 1994), which guarantees that there exists only one instance of
each rule in a program. Admittedly deriving separate classes for different rules violates the
principle that virtual functions should be reserved for variation in behavior, as opposed
to variation in value (Cargill, 1992), but in this case preference was given to the separate
derivation of the rules from the base class, which also gives each rule a distinct class name
for selection by the user.

All rules register themselves automatically with the reference geometry they belong to.
That way, each reference geometry knows which rules are available to integrate on it and
the user can apply selection criteria to find an appropriate rule. For that purpose, different
possibilities exist, see Figure 6.4. For example, a choice can be made based on the name
of the rule or the approximation order it offers. The latter is particularly interesting as it
allows to require that all integrals have to be computed with (at least) a certain order of
accuracy:

IntegrationRuleByOrderEQ crit(5); // Use a 5th order rule

setElementIntegrationOrder <dim>(crit); // for element integrals.

On the other hand, the user can also decide on an element-by-element basis which rule to
use; this feature is required for FEMs with p-refinement, i.e., the approximation order of
the FE space is allowed to vary on different elements.

A crucial aspect of the integration routine is that the types to be integrated and the result
type are templatized. The condition on the integrand function is that it maps from a refer-
ence geometry to some linear space S , i.e., ϕ : K̂ → S . In terms of C++ that means the
function evaluation s = ϕ(x̂) for s ∈ S and at the reference shape coordinate x̂ ∈ K̂ can be
carried out in the function call syntax as phi(const RefSpacePoint<dim>& x, S& s),
i.e., it is either a function with this prototype or a functor with a corresponding operator().
Through a traits system (Myers, 1995) the result type of the integral is deduced from the
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Table 6.1: Runtime comparison with
and without saving of the face normal
vectors. The comparison uses entropy
variables V or conserved variables U
and an Euler equation test case.

runtime [s]
V U

face geometry: recomputed 128 76
saved 77 41

input types. Using this system, also various products can be formed and integrated. For in-
stance for the projection of a physical space function f : �d → �, x 7→ f (x), onto a set of
element local basis functions {ψ̂ j, j = 1, . . . , n} the integral r j =

∫
K

f (x) ψ̂ j(G−1(x)) dK =∫
K̂

f (G(x̂)) ψ̂ j(x̂) |Jacx̂G| dK̂ on the element K is computed as

integrateOverElement(K, integrationRule ,

scalarProduct <d>(K.transform2RefElement(f), psi(j)),

b(j));

where integrationRule denotes a pointer to an explicitly chosen integration rule. The
transform2RefElement(f) command wraps the user’s function, which expects physical
space coordinates, so that it can be queried at reference space points by the procedure
integrateOverElement.

If the integrated function is not provided by hpGEM and its type is not included in
the predefined traits, the user can extend these rules by template specialization. Similar
functionality as described above for elements is also available for face integrals.

Saving geometry

In its first implementation, the geometry framework of hpGEM was fully general for
moving meshes with space- and time-dependent element and face mappings. On the one
hand, this approach serves any eventuality, but on the other hand in most cases it is overly
general and unnecessarily costly: Geometry information—for example the normal vectors
on the faces—are typically recomputed (i) in every Gauß point, (ii) of every face, (iii) in
every (solver) iteration, and (iv) of every time step. To avoid (i) and (ii) one would have
to make assumptions restricting the type of mesh that can be used: planar faces or sets of
parallel faces, respectively. These assertions are restrictive and also sometimes hard to
verify. In contrast, the items (iii) and (iv) are relatively easily communicated and checked,
and in fact such constant-in-time meshes are common for the solution of many problems.
Hence the integration framework has been extended so that it can optionally be instructed
to internally cache geometry information—namely the normal vectors on the faces and
the Jacobian of the element mappings—and reuse it. For the case of a constant mesh,
performance results with and without storing geometry information are listed in Table 6.1.
They were obtained from a typical run of the Euler solver from Chapter 5 for a fixed
number of time steps. Thanks to the saved geometry computations the overall simulation
executes 40% faster for entropy variables and 46% when conservation variables are used.
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Figure 6.5: The function f (x) = sin(2πx) L2-projected onto six equal-sized elements with
ps = 1 DG basis functions on the interval Ω = [0; 1]. In (a), the discrete function is plotted
with its discontinuities (the jumps are connected by the visualization software). A different
plotting routine automatically makes the projected function continuous by nodal averaging,
see (b).

The example supports two findings: first, the speedup depends on the total amount of
computation in the implemented algorithm, but, second, whenever the constant mesh
geometry assumption is viable it should be exploited as the benefit in execution time is
considerable.

6.4.5 Namespace Output

The results of numerical simulations frequently need to be processed for graphical presen-
tation. hpGEM offers several output classes coupling it to Tecplot (Tecplot, Inc., 2005).
Different implementations allow writing of the complete mesh and data or reduction by
one dimension, which enables to write space-only output from space-time meshes. Further,
the output can be written on a per-element basis, meaning that the discontinuous character
of the solution is preserved, or as nodally averaged, continuous fields, cf. Figure 6.5. Also
the plots in Chapter 5 have been prepared with these output facilities.

6.5 Examples from the DG Navier–Stokes implementation

Having discussed several parts of the hpGEM framework, a few points will be added which
stem from the experience gained during the implementation of the discontinuous Galerkin
method derived in Chapter 5 for the Euler and Navier–Stokes equations. Other applications
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of hpGEM are discussed in (Pesch et al., 2007), among them an elliptic problem (Poisson
equation) and a method for interface tracking based on the cut-cell and level set methods.

Here, at first two examples of general programming or design principles are given to
illustrate how consistency within the application code and coherence with the implemented
problem can be improved. Thereafter, a larger-scale design is proposed that concerns the
different flux entities in hyperbolic equations.

6.5.1 Consistent use of different variable sets

One of the advantages of C++ mentioned in Section 6.3.2 is its static type checking; the
compiler has to be able to infer the type of every object so that it can be guaranteed that the
operations carried out on the object are defined. Appropriate design can exploit the type
checking mechanism to ensure consistency in the program. In the generalized variable
approach discussed in Chapter 2 and used in the implementation of the method from
Chapter 5, the problem arises that the implementation should accommodate the different
variable sets, but depending on which set is used, different transformations have to be
carried out. The data structure that represents a state of any of the discussed variable sets
in space-time dimension d is an array of length d + 1. However, when a state is brought to
that level, the information which variable set it is based on is lost. By setting up a distinct
type for a conservative variable state as

template <DimType dim>
class Ustate

: private FixedVector <NumType, dim+1>
{ public: using FixedVector <NumType, dim+1>::operator[]; };

and analogous declarations for V and Y states, the possibility to exploit the variable
type information is restored. The simplicity of the Ustate class template is its strength:
the absence of assignment operators to other types prevents different state types from
being used inconsistently. No operations other than vector entry access are defined for
Ustate<dim> objects, because most operations (e.g., scalar multiplication) do not make
sense for such a type. Functions operating on states are type-safe by declaring their
arguments in terms of the class templates, for example,5

template <DimType dim, class VariableSet > // empty default!
struct ComputeA0 {};

template <DimType dim>
struct ComputeA0 <dim, Uvariables <dim> >
{ static void go(const FluidThermodynamics*,

5In the example, the partial specialization is on a type VariableSet. The classes that take its place,
Uvariables<dim> etc., are extensions of the U, Y , and V state implementations and add facilities like
transformations between variable sets.
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const Ustate<dim>&,
MatrixType& mA0) { /* fill mA0 with

identity matrix */ }

};

template <DimType dim>
struct ComputeA0 <dim, Vvariables <dim> >
{ static void go(const FluidThermodynamics* fluidPtr,

const Vstate<dim>& V,
MatrixType& mA0) { /* compute A^0_V */ }

};

// Analogous specialization for Yvariables <dim>.

Each partial specialization for one of the variable sets accepts only an argument of the
associated state type and computes the corresponding matrix AV

0 for the concerned variable
set V . In the described way, the state type is carried into all parts of the implementation
that have to deal with state values, leaving it to the C++ compiler to select the correct
template specialization and to check that consistent argument types are used.

The choice which state type to use is made in the main program by a type declaration
typedef Vvariables<dim> CurrentVariableSet; which can be exchanged easily
for a different type. Subsequently, CurrentVariableSet is one of the template arguments
for many class and function templates that implement the DG method. The consequence
of the compile-time selection of the used state variable set is that choosing a different
set requires the main program to be recompiled.6 But this sacrifice is opposed by a clear
improvement of expressiveness and quality of the software.

Incidentally, the same type safety effect is exploited by the distinction between Ref-
SpacePoint<dim> and PhysSpacePoint<dim>, i.e., points with reference and physical
element coordinates, respectively. While the underlying data structure is identical for both
classes and the difference may appear minor, it has been very useful to distinguish the two
types. In this way, the mathematical meaning of the input and output of the arguments of
mappings, integration arguments, etc., is always clear and misuse can be avoided.

6.5.2 Implementation of the thermodynamical description of different media

The entropy variable formulation exploited in the previous chapters has the advantage that
the incompressible limit is well-defined. This not only makes it possible to treat low Mach-
number gas flows, but also fluids with different properties, including incompressible ones.

6Admittedly, one could instantiate all three specializations (U, V , and Y variables) in one application and
thus defer the decision about the used variable set until runtime, but this is not realized in the available
implementation.
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An obvious but not necessarily trivial requirement for the exploitation of this capability
is that the thermodynamical model equations in the implementation of the FEM have to
be exchangeable. To achieve this important goal, two issues have to be settled: First, all
necessary thermodynamic relations in the complete algorithm have to be cataloged. While
the theoretical description derives many properties from very few basic relations, this
is practically not feasible. Furthermore, the computation of boundary conditions often
requires additional relations, beyond the equations for pressure and energy needed in the
conservation equations. The second problem concerns the technical issue of removing the
implementation of the thermodynamical relations from multiple occurrences in different
code units and bundling them in a unique entity.

For the implementation of thermodynamical models in the framework of the Navier–
Stokes solver of Chapter 5, the two problems lead to the solution documented in Fig-
ure 6.6a. A set of 16 functions is declared necessary by the abstract base class Fluid-
Thermodynamics for any fluid description to be used with all three variable sets intro-
duced in Chapter 2. The qualification in the previous sentence is important: the function
pFrom_rho_e, for instance, cannot be defined for an incompressible fluid. It is, however,
not necessary to do so, because this relation is needed only by the transformations V(U)
and Y(U). Clearly, these are not needed because the conservative variable set U can-
not be employed to compute incompressible flow. Therefore, the implementation of
pFrom_rho_e in the class IncompressibleFluidNondim raises an exception to warn
the user about the invalid combination of problem and numerical method. An exception is,
of course, a runtime consequence and this emphasizes that type-safety as in the problem dis-
cussed in the previous section cannot be achieved for the thermodynamical models. Rather,
the selection of a particular model is itself a runtime task and the different implementations
shown in Figure 6.6a are handled only via base class pointers FluidThermodynamics*
in most routines.

In the course of Chapter 5, however, some parts have been added to the numerical
algorithm that can work only with a restricted class of fluids. The HLLC numerical flux
and the boundary conditions by Darmofal et al. (2000) are examples. As these apply only
to ideal gases, there is an extra interface layer that provides a base for different implemen-
tations of this model. The derived base class IdealGas is itself abstract and extends the
general base FluidThermodynamics with another five relations that are necessary only
for the provision of the specialized boundary conditions. Different implementations of
IdealGas are still possible, e.g. for constant or variable specific heats, but only one is
indicated in Figure 6.6a. The inheritance tree discussed so far is the result of the continuous
development within the project. It might be worth refactoring it according to Figure 6.6b
to preserve more structure, and express the relations between different fluid models and
algorithm components.

A final remark on the implementation of thermodynamical models in the object-oriented
way of Figure 6.6 concerns the incurred runtime overhead. Typically, Navier–Stokes
solvers are written for one particular fluid model, and the necessary equations of state are

127



Chapter 6 hpGEM – A software framework for DG FEMs

FluidThermodynamics

+alpha_pFrom_p_T
+beta_TFrom_p_T
+c_pFrom_p_T
+vFrom_p_T
+eFrom_p_T
+hFrom_p_T
+eFrom_p_rho
+TFrom_p_e
+pFrom_rho_e
+sFrom_rho_e
+gammaMinus1
+pFrom_T_mu
+rhoFrom_p_T
+aFrom_p_rho
+Ec
+Pr

VanDerWaalsNondim
-_Ec
-_Pr
-_gammaMinus1
-_a
-_b

IdealGas

+eFrom_p_s
+hFrom_p_s
+rhoFrom_p_e
+rhoFrom_e_s
+TFrom_h_s

IncompressibleFluidNondim
-_Ec
-_Pr
-_rho0

IdealGasNondim
-_Ec
-_Pr
-_gammaMinus1

(a) Abstract classes have their methods shown without argu-
ments (these are part of the function name anyway) and the
return type is a single real value. The implementations do not
repeat the member functions but show only the minimal set of
data values.

FluidThermodynamics

VanDerWaalsGas

CovolumeGas

IdealGas

IncompressibleFluid

(b) A possible design to restore the struc-
ture of the thermodynamical models with a
revised inheritance tree. All shown classes
are abstract and implementations could
split off ‘horizontally’ in every layer.

Figure 6.6: Simplified UML class diagrams of the current and a possible refactored
inheritance structure for thermodynamical classes.

hard-wired into the code wherever necessary. Moving the evaluation of these relations
into virtual member functions of the implementation of an abstract base means that one
or more indirect function calls are necessary whenever a thermodynamical conversion
is needed. These calls cannot be optimized by inlining as only a base class pointer is
available and the class resolution cannot take place until runtime. Therefore a considerable
overhead is introduced.7 Obviously, the extra cost is incurred independent of the fluid
model used. Consequently, even if a single specific thermodynamical model is used,
juxtaposing runtimes of the general framework with a specialized code for the same model
is comparing apples and oranges. Effectively, the described overhead is the price for being
able to consider a much broader class of problems (and ultimately multifluid problems)

7To give an idea of the order of magnitude: for a three-dimensional space-time mesh of 10 × 10 × 1 elements
with only one degree of freedom per element in a single pseudo-time step with entropy variables, the Euler
equations require 94, 800 calls to member functions of IdealGasNondim, and the viscous terms another
48, 000.
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with a single numerical method and implementation.

6.5.3 Fluxes for hyperbolic equations

Apart from the thermodynamical model, another entity that is needed in the weak form
of the Navier–Stokes equations described in Chapter 5 is the (Euler) flux function Fe

and its numerical counterpart F̂e. The original flux Fe occurs in an element integral with
the integrand ∇ψ̂ j · Fe, which is typical for conservation laws. Further, the Euler flux
has a unique functional form (e.g., based on conservative variables and pressure) and
thus requires a once-only implementation. By contrast, different numerical flux functions
may be used. When different sets of variables are allowed, the computation of the flux
may require an initial transformation to the set of quantities by which the flux is defined.
Therefore, for the evaluation of the flux the variable type has to be known, while it is not
needed for the definition of the flux based on a state of a specific type. To comply with
these specifications the design in Figure 6.7 on the next page is proposed.

The abstract base class NumericalFlux8 is derived from to fix the type of the flux result.
For the Euler flux, this is a (dim+1)-dimensional vector, with the space-time dimension
dim. For the current purposes, the type of the state input to NumericalEulerFlux is still
left unspecified. This has to change in an implementation, for example in EulerHLLC,
which must be able to compute flux values and thus be able to obtain the variable types
used in its formal definition. The templatization discussed in Section 6.5.1 provides the
possibility to work with a specific set of quantities without having to subscribe exclusively
to one of the state types U, Y , or V . Hence the template parameter VariableSet selects
one of the three at compile time. Polymorphism allows different numerical fluxes to
be used through the NumericalEulerFlux-interface. It is up to the implementations
of numerical fluxes to assure that their use is valid in the given context. This concerns
especially the combination with a specific fluid model. For example the HLLC flux
checks that the FluidThermodynamics-instance to which it is provided access is an
IdealGas implementation. The HLLC flux collaborates with EulerFlux, which im-
plements the analytical Euler flux function based on a UState, used by the HLLC flux,
cf. (van der Vegt and van der Ven, 2002b). On the other hand, EulerFlux uses an im-
plementation of NumericalEulerFlux when computing the flux on an internal face.
EulerFlux is, however, also abstract in its current form as its template method aspect
still requires it to be equipped with functions that can extract a state (of the type specified
by the template argument VariableSet) from the user’s data.9 While the time flux of
the Euler equations is uniquely defined by causality and can thus be implemented by
EulerFlux, taking care of spatial boundary conditions cannot. Different types of con-

8For brevity, in this subsection the template arguments are omitted from names that would require the specifica-
tion of the arguments to denote a type.

9The current flux class design effectively relies on the states being supplied from the user’s data; this turns out
as a restriction for some purposes.
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6.6 Conclusions

ditions have been discussed in Chapter 5 and an arbitrary number of them may be used
for a test case. Therefore, EulerFlux links to objects of a type that implements the
PrescribedFluxBoundaryCondition interface. These objects treat different types of
boundary conditions possible for the system, and are joined in a chain of responsibility,
cf. (Gamma et al., 1994).

The described relationships and partitioning of responsibilities allow to vary every aspect
of the flux computation independently. For the viscous terms of the Navier–Stokes case,
boundary conditions are required as states rather than fluxes. For that purpose, a similar
framework to the one presented here exists.

6.6 Conclusions

In this chapter, hpGEM, a general-purpose framework for the implementation of discontin-
uous Galerkin finite element discretizations, has been introduced. In contrast to several
other finite element packages available, hpGEM is neither supposed to be a “solver” for a
predefined set of equations nor is its focus to provide implementations of finite element
algorithms. Rather it makes data structures and methods available that are general and
frequently needed in the development and implementation of finite element application
software. The framework provides means to define basis functions and expansions in terms
of such bases, but leaves decisions about which data and variables to store to the user.
Consequently, hpGEM does not impose restrictions on the type or number of equations
solved. hpGEM works on general, unstructured meshes and all geometric transformations
are handled internally. A convenient interface for the computation of integrals is provided.

Object-oriented programming techniques and design patterns are employed and lead
to flexible, reusable, and easily extensible software. C++ templates are used to support
generic programming aspects, like dimension-independent programming, user-defined data
classes, and function return types. Their exploitation also allows to increase performance
by template meta-programming techniques.

The framework does not implement any linear algebra solver capabilities but rather
makes existing packages available, which provide well-tested, efficient iterative and direct
solvers. The same holds for the necessary up- and downstream software, e.g., mesh
generation and visualization tools.

The ongoing and future developments will make hpGEM a more versatile tool. The
geometric capabilities of hpGEM will be extended by mesh refinement techniques to
be used with general meshes. Apart from the more accurate geometric representation
this also enables to apply multigrid techniques, which will increase the efficiency of the
solution process. Expansion on the linear algebra back-ends is envisaged, too, so that a
larger variety of sparse linear solvers—including parallel versions—are available to the
framework user. These will allow to exploit parallelism in the solution stage, in addition to
the parallelism in the finite element computation, which is another goal.

131
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The hpGEM framework is an answer to the third central question from Chapter 1:
it emphasizes combining self-developed FE-related components with existing solutions
for supporting tasks and thereby provides numerical scientists with data structures and
methods matching those from the mathematical formulation. A variety of PDE problems
have been solved successfully and in concise form based on hpGEM, see also (Pesch et al.,
2007), which underlines its suitability for numerical method development and application.
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Chapter 7

Conclusions and recommendations

Der Weisheit erster Schritt ist: alles anzuklagen,
der letzte: sich mit allem zu vertragen.

Georg Christoph Lichtenberg (1742–1799),
Sudelbücher

At this stage it is time to summarize what has been achieved regarding the three central
questions posed in Chapter 1 (pp. 3–4) of this thesis.

The starting point for the research presented here has been the realization that many
numerical methods for the Navier–Stokes equations allow the treatment of only one specific
type of fluid. Such a restriction is inappropriate when flow problems involving different
fluids or physical conditions are to be addressed. Motivated by this shortcoming, in
Chapter 2 the idea to consider the Navier–Stokes equations in terms of generalized variable
sets—and in particular entropy variables—has been taken up. For entropy (and pressure
primitive) variables the incompressible limit of the equations is well-defined, which allows
suitably constructed numerical methods to compute both high and low Mach number flows,
and even incompressible problems can be considered. As such, the formulation in terms of
entropy variables provides an answer to the first central question.

In practical respects, an open challenge is to see how the formulation performs in
combination with other fluid models than the ones employed here. For example, in the
case of water a very small but nonzero compressibility applies. In general, it would be
interesting to simulate fluids for which the effects not represented in the ‘ideal’ models
of Chapter 2 play a role. In this respect, also the generalized equation of state as, e.g.,
presented by Polner (2005) could be a starting point. All these ideas, however, share two
complications: First, the used fluid models have to be known in sufficient mathematical
detail to allow all transformations necessary for the usage of entropy or pressure primitive
variables. Second, all transformation functions have to be consistent with each other. This
is expected to be hard to realize for measured equations of state, based on data tables.

The Galerkin least-squares discretization described in Chapter 4 is a numerical method
that allows computations with the entropy variable formulation of the Navier–Stokes
equations. It provides a well-established testbed for the application to compressible and
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incompressible flow. This setup has been extended by devising a stabilization operator that
is applicable to both types of flow, see (Polner et al., 2007). The operator has been tested
in various applications. It has been demonstrated that it does not degrade the accuracy of
the method, which again holds for compressible and incompressible flow. Although this is
an important step towards a general simulation tool, the second central question caused the
investigations to turn into a different direction: The flexibility of discontinuous Galerkin
methods with respect to local mesh refinement and (locally) higher order expansions meets
the formulated requirements much better. Further, the unified space-time treatment and the
solution with pseudo-time integration fit well into the target specification.

Having extended a discontinuous Galerkin method for ideal gas compressible flow to
use general variable sets and different thermodynamical descriptions, the pseudo-time
integration had to be adapted and extended in Chapter 5. With the discussed changes it
allows to solve the nonlinear algebraic system arising from the discretization with various
sets of independent variables. The class of problems the method is able to address has been
extended by augmenting the initially used Euler model with the viscous terms of the Navier–
Stokes equations. These have been treated using the interior penalty method. A wide range
of test cases has been addressed and confirmed the accuracy of the numerical method as
well as its applicability to very different physical settings. The discussed discontinuous
Galerkin method has all the properties demanded by the second central question. However,
its inspection has also raised several questions and left room for improvements. Regarding
the pseudo-time integration, an advantage is that it does not require a linearization of the
discrete operator. With more complex physical situations this will admittedly be an even
more beneficial trait. On the other hand, the examination of the eigenvalue spectrum of the
Euler operator and the experience from the simulations leaves some optimization to be
desired. Convergence can be rather slow, and the analysis concerning the incompressible
case has shown a particular need for improvements. Investigations in a preconditioner
that adapts the spectrum better to the available Runge–Kutta methods might lead to better
performance. It should be kept in mind, however, that the solution method must not restrict
the applicability to specific media. Ideally the employed techniques should be robust
enough to work with compressible and incompressible fluids. In general the discussed
finite element method could benefit greatly from applying an h-multigrid algorithm as
developed by Klaij et al. (2007).

In combination with an arbitrary Lagrangian–Eulerian formulation, the space-time
method naturally accommodates moving and deforming meshes, which is a good starting
point for dynamic adaptation and interface tracking. For the latter task, the treatment in
space-time, unfortunately, increases the complexity considerably. Refining the elements
in such a way that the fluid-fluid interface is a face is a nontrivial task in two space
dimensions. For three-dimensional space meshes the problem is yet unsolved: the added
time dimension means that four-dimensional geometries have to be partitioned based on
the intersecting interface.
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The numerical methods discussed in this dissertation lead to complex solution algorithms
that have to be implemented as software to be applied in practice. The third central
question sought for a facilitation of the implementation task and has led to the work
on hpGEM, a general-purpose discontinuous Galerkin finite element method software
framework. Chapter 6 has documented the ideas behind hpGEM and cornerstones of its
design and implementation. Useful paradigms and methodologies have been presented
and their benefit explained. The confirmation that hpGEM’s goals are achieved is included
in Chapter 5: the implementation of the numerical method presented there is built on
hpGEM. Beyond that, by now about half a dozen PhD students and researchers have
implemented different finite element methods for various mathematical problems based on
the framework.

Although this gives a positive feedback for the development, a lot remains to be done.
In Chapter 6, several concept areas have been pointed out that require extensions. A major
step necessary for several key technologies is to enable dynamic local mesh refinement. It
would not only facilitate multigrid techniques but also the adaptation to fine scale features
and (space-time) interface tracking, which are among the visions for the overall project. To
realize this feature with minimal impact on existing applications based on hpGEM and to
provide an easy-to-use interface should be one of the next challenges. The discontinuous
Galerkin method for the Navier–Stokes equations has raised the need for performance
improvements. Several steps in this direction have already been taken, but ultimately the
limit will prove the sequential processing to which framework is so far restricted. The
longer this circumstance lasts, the more it aggravates, as the ongoing developments rarely
facilitate or even consider the problems inherent in parallelization. A more fundamental
problem for the framework development is the supply of expertise: for the continuation
of the project, contributors with an understanding of both the mathematical topics and
object-oriented design and programming are required.

Having formulated answers to the three central questions and delivered a proof of
concept for the developed numerical method and software artefacts, the result of this thesis
is a promising path for future developments of finite element methods for multiphase flow
simulation.
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Appendix A

Matrices for the quasi-linearized form of the
Navier–Stokes equations

In this appendix, the derivation of the matrices AV
ı̄ and KV

ı̄ ̄ of the quasi-linear form of
the Navier–Stokes equations (cf. Section 2.8.1) is summarized for pressure primitive and
entropy variables. The derivations are carried out using the dimensional rather than the
nondimensional form of the equations, cf. Section 2.10. Only general thermodynamical
relations from Section 2.6 are used, without assuming a specific equation of state.

A.1 Primitive variables using pressure

A.1.1 Jacobian AY
0 of the transformation U(Y)

The partial derivatives of the conservation variables U with respect to primitive variables Y
(cf. (2.44,2.46) on page 28) are evaluated using (2.25,2.27,2.29).(

∂ρ

∂p

)
T,vı̄

=

(
∂α−1

∂p

)
T,vı̄

= −α−2
(
∂α

∂p

)
T,vı̄

=
βT

α
= ρβT , (A.1a)(

∂(ρvı̄)
∂p

)
T,vı̄

= vı̄

(
∂ρ

∂p

)
T,vı̄

=
βT vı̄
α
= ρβT vı̄ , (A.1b)(

∂(ρetot)
∂p

)
T,vı̄

=
βT

α
etot + ρ

(
∂e
∂p

)
T,vı̄

= βT (ρetot + p) − Tαp , (A.1c)

(
∂ρ

∂v ̄

)
p,T
= 0 , (A.1d)(

∂(ρvı̄)
∂v ̄

)
p,T
= ρδı̄ ̄ , (A.1e)(

∂(ρetot)
∂v ̄

)
p,T
= ρv ̄ , (A.1f)
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(
∂ρ

∂T

)
p,v ̄

=

(
∂α−1

∂T

)
p,vı̄

= −α−2
(
∂α

∂T

)
p,vı̄

= −
αp

α
= −ραp , (A.1g)(

∂(ρvı̄)
∂T

)
p,v ̄

=

(
∂ρ

∂T

)
p,v ̄

vı̄ = −
αpvı̄
α
= −ραpvı̄ , (A.1h)(

∂(ρetot)
∂T

)
p,v ̄

= −αp(ρetot + p) + ρcp . (A.1i)

Therefore the Jacobian matrix is

AY
0 =

∂U
∂Y
=


ρβT 0 −ραp

ρβT vı̄ ρδı̄ ̄ −ραpvı̄
βT (ρetot + p) − Tαp ρv ̄ −αp(ρetot + p) + ρcp

 . (A.2)

A.1.2 Euler flux Jacobians AY
k̄
= ∂Fe

k̄
/∂Y

The Euler flux in the k̄ th Cartesian coordinate direction is repeated from Eq. (2.15):

Fe
k̄ =


ρvk̄

ρvı̄vk̄ + pδı̄k̄
(ρetot + p)vk̄

 . (A.3)

The partial derivatives of the flux components with respect to the primitive variables are(
∂(ρvk̄)
∂p

)
T,v ̄

= ρβT vk̄ , (A.4a)(
∂(ρvı̄vk̄ + pδı̄k̄)

∂p

)
T,v ̄

= ρβT vı̄vk̄ + δı̄k̄ , (A.4b)(
∂((ρetot + p)vk̄)

∂p

)
T,v ̄

= [βT (ρetot + p) − αpT + 1]vk̄ , (A.4c)

(
∂(ρvk̄)
∂v ̄

)
p,T
= ρδk̄ ̄ , (A.4d)(

∂(ρvı̄vk̄ + pδı̄k̄)
∂v ̄

)
p,T
= ρ(δı̄ ̄vk̄ + δk̄ ̄vı̄) , (A.4e)(
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∂v ̄

)
p,T
= ρv ̄vk̄ + (ρetot + p)δk̄ ̄ , (A.4f)

(
∂ρvk̄

∂T

)
p,v ̄

= −ραpvk̄ , (A.4g)
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(
∂((ρvı̄vk̄ + pδı̄k̄)

∂T

)
p,v ̄

= −ραpvı̄vk̄ , (A.4h)(
∂(ρetot + p)vk̄)

∂T

)
p,v ̄

= [−αp(ρetot + p) + ρcp]vk̄ . (A.4i)

With these findings, the Jacobian is compiled as

AY
k̄ =

∂Fe
k̄

∂Y
= (A.5)
ρβT vk̄ ρδk̄ ̄ −ραpvk̄

ρβT vı̄vk̄ + δı̄k̄ ρ(δı̄ ̄vk̄ + δk̄ ̄vı̄) −ραpvı̄vk̄
[βT (ρetot + p) − αpT + 1]vk̄ ρv ̄vk̄ + (ρetot + p)δk̄ ̄ [−αp(ρetot + p) + ρcp]vk̄

 .
A.1.3 Viscous flux Jacobians KY

ı̄ ̄

For a single, homogeneous fluid there is no mass diffusion, which is reflected in the fact
that the diffusive fluxes in the continuity equation vanish. Hence the first row in the
diffusivity matrices KY

ı̄ ̄ is zero.
Considering, for the moment, only the momentum equations, the viscous terms take the

form discussed in Section 2.2,

∇ · �visc =
∂Fd

n̄

∂xn̄
=

∂

∂xm̄

(
KY

m̄n̄
∂Y
∂xn̄

)
, (A.6)

with the diffusive flux of the ı̄ th momentum component in the j th Cartesian coordinate
direction given by Eq. (2.14b),

Fd
ı̄ ̄ = (λ − 2

3η)
∂vn̄

∂xn̄
δı̄ ̄ + η

(
∂v ̄
∂xı̄
+
∂vı̄
∂x ̄

)
. (A.7)

Taking Fd
1 in dimension d = 3 as an example, the terms of the flux

Fd
1 = (λ − 2

3η)
∂vn

∂xn


1
0
0

 + η

∂v1
∂x1
+ ∂v1

∂x1
∂v2
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∂x2
∂v3
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+ ∂v1

∂x3

 , (A.8)

can be assigned to the linearization matrices according to

KY
11 =


λ − 2

3η + 2η 0 0
0 η 0
0 0 η

 , KY
12 =


0 λ − 2

3η 0
η 0 0
0 0 0

 , KY
13 =


0 0 λ − 2

3η

0 0 0
η 0 0

 . (A.9)
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In general, by comparing the components of Fd
k̄ı̄
= KY

ı̄ ̄k̄l̄
Yl̄, ̄, one finds the entry of the k̄ th

row and l̄ th column of the d × d momentum block of KY
ı̄ ̄ to be

KY
ı̄ ̄k̄l̄ = δı̄k̄δ ̄l̄(λ −

2
3η) + η(δk̄l̄δı̄ ̄ + δı̄l̄δ ̄k̄) . (A.10)

The first and last column of KY
ı̄ ̄ are zero in the momentum rows because the viscous

momentum fluxes neither depend on pressure nor temperature.

Further, for the energy equation, the non-advective contributions are dissipation and
heat conduction:

∇ · (�visc · v) − ∇ · q = ∇ ·
[
(λ − 2

3η)(∇ · v)v + η(∇v + (∇v)ᵀ) · v + κ∇T
]
. (A.11)

Hence, the flux in the ı̄ th Cartesian coordinate is

Fd
(d+2)ı̄ = (λ − 2

3η)
∂vn̄

∂xn̄
vı̄ + η

(
∂vn̄

∂xı̄
+
∂vı̄
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)
vn̄ + κ

∂T
∂xı̄

, (A.12)

which reappears in the last row of the KY
ı̄ ̄ matrices as1

KY
ı̄ ̄(d+2)l̃ =


0 if l̃ = 0 ,
(λ − 2

3η)δ ̄l̃vı̄ + η(δı̄ ̄vl̃ + δı̄l̃v ̄) if 0 < l̃ < 1 + d ,

κδı̄ ̄ if l̃ = 1 + d .

(A.13)

For the spatial dimension d = 3 the matrices KY
ı̄ ̄ are written out in Table A.1 on the facing

page.

A.2 Entropy variables

Because many differential thermodynamical relations are in terms of the (observable)
variables pressure and temperature, transforming from entropy to primitive variables first
facilitates the step to introduce entropy variables. For example, the way to introduce
derivatives of the entropy variables in the time derivative is

∂U
∂t
=
∂U
∂Y

∂Y
∂V

∂V
∂t
=
∂U
∂Y

(
∂V
∂Y

)−1
∂V
∂t
= AV

0
∂V
∂t

. (A.14)

1The variable index l̃ is assumed to cover the range 0, . . . , 1+d here; in this case the space dimension numbering
can remain as ı̄, ̄ = 1, . . . , d.
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̄→
↓ı̄ 1 2 3

1



0 0 0 0 0

0 χ 0 0 0

0 0 η 0 0

0 0 0 η 0

0 χ v1 η v2 η v3 κ





0 0 0 0 0

0 0 θ 0 0

0 η 0 0 0

0 0 0 0 0

0 η v2 θ v1 0 0





0 0 0 0 0

0 0 0 θ 0

0 0 0 0 0

0 η 0 0 0

0 η v3 0 θ v1 0



2



0 0 0 0 0

0 0 η 0 0

0 θ 0 0 0

0 0 0 0 0

0 θ v2 η v1 0 0





0 0 0 0 0

0 η 0 0 0

0 0 χ 0 0

0 0 0 η 0

0 η v1 χ v2 η v3 κ





0 0 0 0 0

0 0 0 0 0

0 0 0 θ 0

0 0 η 0 0

0 0 η v3 θ v2 0



3



0 0 0 0 0

0 0 0 η 0

0 0 0 0 0

0 θ 0 0 0

0 θ v3 0 η v1 0





0 0 0 0 0

0 0 0 0 0

0 0 0 η 0

0 0 θ 0 0

0 0 θ v3 η v2 0





0 0 0 0 0

0 η 0 0 0

0 0 η 0 0

0 0 0 χ 0

0 η v1 η v2 χ v3 κ


Table A.1: Viscous flux matrices KY

ı̄ ̄ for primitive variables with pressure and space
dimension d = 3. The following coefficients are defined based on the viscosity coefficients:
χ = λ + 4/3 η and θ = λ − 2/3 η.

A.2.1 Jacobian AV
0 of the transformation U(V)

In Equation (A.14), the Jacobian ∂V/∂Y is yet unknown. The necessary derivatives are(
∂((µ − v2

n/2)/T )
∂p

)
T,vı̄

=
1
T

(
∂µ

∂p

)
T,vı̄

=
α

T
, (A.15a)(

∂(vı̄/T )
∂p

)
T,v ̄

= 0 , (A.15b)(
∂(−1/T )
∂p

)
T,vı̄

= 0 , (A.15c)
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(
∂((µ − v2

n/2)/T )
∂v ̄

)
p,T
= −

v ̄
T
, (A.15d)(

∂(vı̄/T )
∂v ̄

)
p,T
=

1
T
δı̄ ̄ , (A.15e)(

∂(−1/T )
∂vı̄

)
p,T
= 0 , (A.15f)

(
∂((µ − v2

n/2)/T )
∂T

)
p,vı̄

=
1
T

(
∂µ

∂T

)
p,vı̄

−
1

T 2 (µ − v2
n/2) = −

1
T 2 (h − k) , (A.15g)(

∂(vı̄/T )
∂T

)
p,v ̄

= −
vı̄
T 2 , (A.15h)(

∂(−1/T )
∂T

)
p,vı̄

=
1

T 2 . (A.15i)

Therefore, the Jacobian of the transformation V(Y) is

∂V
∂Y
=

1
T


α −v ̄ −(h − k)/T
0 δı̄ ̄ −vı̄/T
0 0 1/T

 , (A.16)

with the inverse

∂Y
∂V
= T


ρ ρv ̄ ρ(h + k)
0 δı̄ ̄ vı̄
0 0 T

 . (A.17)

Concatenating with the transformation to conservation variables, (A.2), the relevant Jaco-
bian is obtained following (A.14) as

AV
0 = ρ

2T


βT βT v ̄ βT (h + k) − ααpT

βT vı̄v ̄ + αδı̄ ̄ [βT (h + k) − α(αpT − 1)]vı̄
sym. (h + k)[βT (h + k) − 2ααpT ] + α(cpT + 2k)

 . (A.18)

A.2.2 Euler flux Jacobians AV
k̄
= ∂Fe

k̄
/∂V

Analogously to AV
0 , the Euler flux Jacobian AV

k̄
for entropy variables is found by postmulti-

plying (A.5) with (A.17), which results in the matrix in (A.19) on page 144.

A.2.3 Viscous flux Jacobians KV
ı̄ ̄

Previously, the viscosity matrices KY
ı̄ ̄ for primitive variables using pressure have been

derived; the matrices KV
ı̄ ̄ for entropy variables can be obtained by postmultiplication with
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A.2 Entropy variables

the inverse Jacobian of the variable transformation, cf. (A.17). These matrices are listed in
Table A.2 on the following page for the spatial dimension d = 3.
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̄→ ↓
ı̄

1
2

3

1
T

                             0
0

0
0

0

0
χ

0
0

χ
v 1

0
0

η
0

η
v 2

0
0

0
η

η
v 3

0
χ

v 1
η

v 2
η

v 3
ω
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2
η
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θ
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η
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ω
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v 3
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η
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η
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v 1

ω
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v 3
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K
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(K
V 12
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η
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3
η
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A
V k̄
=
ρ

2 T

         β
T

v k̄
β

T
v k̄

v ̄
+
α
δ
̄k̄

v k̄
[β

T
(h
+

k)
−
α

(α
pT
−

1)
]

v k̄
(β

T
v ı̄

v ̄
+
α

(δ
ı̄̄
+
+
δ ı̄

k̄
+
δ
̄k̄

)
v k̄

[β
T

(h
+

k)
−
α

(α
pT
−

2)
]v
ı̄
+
δ ı̄

k̄α
(h
+

k)
sy

m
.

v k̄
[β

T
(h
+

k)
2
+
α

(2
(h
+

k)
(1
−
α

pT
)+

2k
+

c p
T

)]

         .
(A

.1
9)
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Appendix B

hpGEM geometry details

In Chapter 3, the element shapes supported by hpGEM in meshes of dimension one to
three have been listed. Each reference geometry is defined in an implementation of the
abstract base class template ReferenceGeometry<dim>.1 In the following sections, these
will be described in more detail, adding information about the mappings and integration
rules provided by the framework.

Mappings G : K̂ → K from the reference geometry to physical space are constructed
with the nodal basis for the vertices of each shape. The reference shape vertices are given
by their Cartesian coordinates x̂ = (x̂0, . . . , x̂d−1). For each reference space vertex x̂i the
physical space point is xi. No distinction is made in the current chapter between space-time
and space only meshes as these are merely different interpretations of a given tesselation.

Numerical integration rules are implemented based on (Stroud, 1971) and their naming
follows the scheme introduced there. For each rule, the relevant page number in the cited
work is given for quick reference.

The data related to faces (cf. p. 42) is a part of the geometry information provided by
hpGEM. The faces of a reference shape are defined by an ordered subset of its vertices,
where the order follows the ordering of vertices in the lower-dimensional reference geome-
try of the face (for example, topologically the faces of the reference triangle are reference
lines). The face integrals in finite element formulations require the (solution) data to be
evaluated on the faces, hence points on the face reference geometry have to be mapped to
the (reference) geometry of the element. Providing these mappings is the most important
task for the faces. Concatenated with the element mapping to physical space, the face
mapping also incorporates the information about the face normal vector. Depending on the
ordering of the face vertices, the normal vector computed from the Jacobian of the face to
element mapping can be either inward or outward. To guarantee that the normal vectors
delivered to user code are always outward, the geometry description includes a sign for the
normal vector coordinates on each face.2

1The class template ReferenceGeometry in turn inherits an interface for the description of the composition in
terms of lower-dimensional geometric entities from CodimMaps<dim> and an implementation component from
GaussRuleServer<dim>, which enables the implementation classes to manage the numerical integration
rules related to the reference geometry. A similar functionality should be added for different mappings.

2Alternatively the ordering of the face vertices could be changed. In cases where the face to element mappings
originate from legacy code this has note been done.

145



Appendix B hpGEM geometry details

Edges, i.e., connections between two nodes, are the natural entities of codimension two
implied by a mesh. For three-dimensional reference geometries, these are defined as well.
However so far no edge-to-element mappings are provided by hpGEM, so the definition of
the edges is provisional.

B.1 One-dimensional reference geometry

B.1.1 ReferenceLine

One-dimensional meshes cover a line segment and a single reference geometry suffices for
this purpose. ReferenceLine is implemented mainly for consistency and for verification
purposes, since one-dimensional geometries are of small practical relevance and do not
even exist as elements in the space-time context.

Geometry and topology

ReferenceLine represents the one-dimensional instance of the standard d-cube, which
is defined as K̂ = [−1; 1]d here. In this way, the coordinates of Gauß integration points
normally exhibit symmetry with respect to the coordinate axes. The two vertices of the
reference line at x̂0 = (−1) and x̂1 = (+1) can also be interpreted as faces in the notion of
Chapter 3 and the normal vectors are n0 = (−1) and n1 = (+1).

Mapping

The standard mapping of the reference line is the linear interpolation between the two
physical space points x0 and x1:

G(x̂) =
1 − x̂

2
x0 +

1 + x̂
2

x1 . (B.1)

Integration rules

The integration rules that are implemented for the ReferenceLine are listed in Table B.1.

class name order # points remark
Cn1_1_1 1 1 centroid formula, p. 229
Cn1_3_4 3 2 Gauß formula, p. 230
Cn1_5_9 5 3 Gauß formula, p. 234
C1_7_x 7 4 given without name on p. 314

Table B.1: Integration rules related to ReferenceLine.
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B.2 Two-dimensional reference geometries

B.2 Two-dimensional reference geometries

In two-dimensional space, the common element geometries are triangles and quadrilaterals.
Their reference geometries are presented next.

B.2.1 ReferenceTriangle

ReferenceTriangle provides the two-dimensional version of the d-simplex, a shape that
is defined by the origin and all points at unit distance from it on the positive coordinate
axes.

Geometry and topology

The vertex positions of the reference triangle have been described above and are written
out in Table B.2a. For two-dimensional shapes, faces of nonzero measure arise, which are
described in Table B.2b.

i x̂i

0 (0, 0)
1 (1, 0)
2 (0, 1)

(a)

face # (i1, . . .) : x̂i ∈ S sign remark
0 0 1 −1 x̂1 = 0
1 0 2 +1 x̂0 = 0
2 1 2 −1 x̂0 + x̂1 = 1

(b)

Table B.2: ReferenceTriangle definitions, (a) vertex coordinates, (b) faces.

Mapping

For the reference d-simplex K̂ , a linear mapping to a simplex K with the vertices xi, i =
0, . . . , d, is given by

G(x̂) = x0 +

d∑
i=1

x̂i(xi − x0) . (B.2)

Integration rules

The integration rules that are implemented for the ReferenceTriangle are listed in
Table B.3 on the next page.

B.2.2 ReferenceSquare

The reference square can be interpreted as a Cartesian product of two reference lines,
one on the x̂0-axis and one on the x̂1-axis. Thereby some of the definitions resemble the
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class name order # points remark
Tn2_1_1 1 1 midpoint formula, p. 307
Tn2_2_1 2 3 p. 307
Tn2_3_1 3 4 negative weight, p. 308
T2_5_1 5 7 p. 314
T2_7_1 7 16 conical product Gauß formula, p. 314, (see

also the remarks about integration rules for
d-dimensional cones in Section B.3.2)

Table B.3: Integration rules related to ReferenceTriangle.

one-dimensional case. In particular the integration rules are product Gauß quadrature rules
exploiting this setup.

Geometry and topology

The vertex positions are clear based on the Cartesian product definition of Reference-
Square. The enumeration of the nodes is per dimension starting in the one with the lowest
Cartesian coordinate index, cf. Table B.4a. The four faces of the reference square are
defined in Table B.4b.

i x̂i

0 (−1,−1)
1 (+1,−1)
2 (−1,+1)
3 (+1,+1)

(a)

face # (i1, . . .) : x̂i ∈ S sign remark
0 0 1 −1 x̂1 = −1
1 0 2 +1 x̂0 = −1
2 1 3 −1 x̂0 = +1
3 2 3 +1 x̂1 = +1

(b)

Table B.4: ReferenceSquare definitions, (a) vertex coordinates, (b) faces.

Mapping

The standard mappings on the d-cube can be expressed by the nodal basis functions,
i.e., as a weighted sum of the node vectors xi. Depending on the compromise between
computational cost and memory requirement, rearranging the terms of the nodal mapping
can be advantageous, as will be discussed here by example of the mapping for quadrilaterals.
Based on the vertex positions xi, the following linear combinations are computed:

a = 1
4 (+x0 + x1 + x2 + x3) , (B.3a) a0 =

1
4 (−x0 + x1 − x2 + x3) , (B.3b)

a1 =
1
4 (−x0 − x1 + x2 + x3) , (B.3c) a01 =

1
4 (+x0 − x1 − x2 + x3) . (B.3d)
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With these auxiliary vectors, the mapping can be evaluated as

G(x̂) = a + x̂0 a0 + x̂1 (a1 + x̂0 a01) . (B.4)

At the cost of three multiplications of a vector with a scalar, three vector additions, and
six temporaries (if expression (B.4) is evaluated as a binary expression tree—unlike
the expression template techniques discussed in (Veldhuizen, 1995; Vandevoorde and
Josuttis, 2003)) the saving compared to a linear combination of the xi is small. For higher
dimensions this comparison may improve, but at the same time the number of vectors ai

increases—and thereby also the additional memory overhead. Further, if one allows
geometry changes, i.e., the nodes of the quadrilateral may move in such a manner that
the element deforms, then the auxiliary vectors have to be recomputed, hence reducing
the savings in computing time. The current compiler switch for some mappings to use a
Horner-like scheme as in (B.4) should therefore be used with care and might be abolished
in the future.

Integration rules

The integration rules that are implemented for the ReferenceSquare are listed in Ta-
ble B.5.

class name order # points remark
Cn2_1_1 1 1 centroid formula, p. 229
Cn2_3_4 3 4 product Gauß formula, p. 230
Cn2_5_9 5 9 product Gauß formula, p. 234
C2_7_4 7 16 product Gauß formula, p. 255

Table B.5: Integration rules related to ReferenceSquare.

B.3 Three-dimensional reference geometries

B.3.1 ReferenceTetrahedron

ReferenceTetrahedron defines the three-dimensional shape that corresponds to the
triangle in two dimensions: it has the minimum number of vertices necessary to span the
complete space with the vectors defined by its edges.

Geometry and topology

The vertex positions have been described previously and are written out in Table B.6a
on the following page. The faces are defined in Table B.6b, and—additionally in three-
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dimensional geometries—the edges of the ReferenceTetrahedron are enumerated based
on the specification of the connected vertices, cf. Table B.6c.

i x̂i

0 (0, 0, 0)
1 (1, 0, 0)
2 (0, 1, 0)
3 (0, 0, 1)

(a)

face # (i1, . . .) : x̂i ∈ S sign remark
0 0 3 2 +1 x̂0 = 0
1 0 1 3 +1 x̂1 = 0
2 0 2 1 +1 x̂2 = 0
3 1 2 3 +1 x̂0 + x̂1 + x̂2 = 1

(b)

edge # (i1,i2) :
x̂i∈ edge

0 0 1
1 0 2
2 0 3
3 2 3
4 1 3
5 1 2

(c)

Table B.6: ReferenceTetrahedron definitions, (a) vertex coordinates, (b) faces,
(c) edges.

Mapping

The mapping for tetrahedra is the three-dimensional instance of the general d-simplex
mapping in (B.2).

Integration rules

The integration rules that are implemented for the ReferenceTetrahedron are listed in
Table B.7.

class name order # points remark
Tn3_1_1 1 1 midpoint formula, p. 307
Tn3_2_1 2 4 p. 307
Tn3_3_1 3 5 negative weight, p. 308
T3_5_1 5 15 p. 315
T3_7_1 7 64 conical product Gauß formula, p. 315

Table B.7: Integration rules related to ReferenceTetrahedron.

B.3.2 ReferencePyramid

Geometry and topology

ReferencePyramid has a base of the shape of ReferenceSquare in the plane defined
by x̂2 = 0 and its tip at x̂ = (0, 0, 1). With this choice, the integration rules can be given as
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conical product of a rule for the reference square and one for a reference line (scaled to
unit length). The vertex positions, faces and edge definitions are compiled in Table B.8.

i x̂i

0 ( 0, 0, 1)
1 (−1,−1, 0)
2 ( 1,−1, 0)
3 (−1, 1, 0)
4 ( 1, 1, 0)

(a)

face # (i1, . . .) : x̂i ∈ S sign remark
0 3 4 1 2 +1 x̂2 = 0
1 3 1 0 +1
2 2 4 0 +1
3 1 2 0 +1
4 4 3 0 +1

(b)

edge # (i1,i2) :
x̂i∈ edge

0 0 1
1 0 2
2 0 3
3 0 4
4 1 2
5 2 4
6 4 3
7 3 1

(c)

Table B.8: ReferencePyramid definitions, (a) vertex coordinates, (b) faces, (c) edges.

Mapping

For five vertices, the ansatz G(x̂) = a+ x̂0 a0+ x̂1 a1+ x̂0 x̂1 a01+ x̂2 a2 combines the bilinear
mapping in planes parallel to the pyramid base with a linear term in the perpendicular
direction and leads to the vector coefficients

a = 1
8 (4 x0 + x1 + x2 + x3 + x4) , (B.5a) a0 =

1
4 (−x1 + x2 − x3 + x4) , (B.5b)

a1 =
1
4 (−x1 − x2 + x3 + x4) , (B.5c) a01 =

1
4 (x1 − x2 − x3 + x4) , (B.5d)

a2 =
1
8 (4 x0 − x1 − x2 − x3 − x4) . (B.5e)

Alternatively, the above formulae can be regrouped with respect to the vertex vectors xi so
that no auxiliary vectors a need to be stored. In this case, the scalar coefficients ξi(x̂),

ξ0 = x̂2 , (B.6a) ξ1 =
1
4 (1 − x̂0 − x̂1 − x̂2 + x̂0 x̂1) , (B.6b)

ξ2 =
1
4 (1 + x̂0 − x̂1 − x̂2 − x̂0 x̂1) , (B.6c) ξ3 =

1
4 (1 − x̂0 + x̂1 − x̂2 − x̂0 x̂1) , (B.6d)

ξ4 =
1
4 (1 + x̂0 + x̂1 − x̂2 + x̂0 x̂1) , (B.6e)

occur in the mapping, which reads

G(x̂) =
4∑

i=0

ξi(x̂) xi . (B.7)
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Integration rules

Stroud (1971, Sec. 2.5) describes a method to generate integration rules for d-dimensional
cones. For the vertical direction, the special rule to approximate integrals in the form

1∫
0

(1 − t)d f (t) dt ≈
n∑

i=1

Ci f (ti) , (B.8)

with the weights Ci and abscissae ti is used. Such rules are given by Stroud for the base
dimension d = 1 on page 314 and for d = 2 on pages 315 and 339. Since these are seventh
order rules, all derived rules are seventh order accurate in the vertical direction and the
numbers of integration points are multiples of four. The integration rules implemented for
the reference pyramid are listed in Table B.9.

class name order # points remark
Pyramid_1_1 1 4 conical product formula (with Cn2_1_1)
Pyramid_3_1 3 16 conical product formula (with Cn2_3_4)
Pyramid_5_1 5 36 conical product formula (with Cn2_5_9)
Pyramid_7_1 7 48 conical product formula (with C2_7_1,

p. 252, which is not listed for the square,
but used here to reduce the number of inte-
gration points from 64 to 48)

Table B.9: Integration rules related to ReferencePyramid.

B.3.3 ReferenceTriangularPrism

Geometry and topology

The base and top of the reference triangular prism are triangles of shape reference triangle
at x̂2 = −1 and x̂2 = +1, respectively. Hence the integration rules can be constructed as
tensor product of rules associated with ReferenceTriangle and ReferenceLine. The
definition of ReferenceTriangularPrism is given in Table B.10 on the facing page.

Mapping

The ansatz
G(x̂) = a + x̂0 a0 + x̂1 a1 + x̂2 a2 + x̂0 x̂2 a02 + x̂1 x̂2 a12 , (B.9)
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i x̂i

0 (0, 0,−1)
1 (1, 0,−1)
2 (0, 1,−1)
3 (0, 0, 1)
4 (1, 0, 1)
5 (0, 1, 1)

(a)

face # (i1, . . .) : x̂i ∈ S sign remark
0 0 2 1 +1 bottom
1 3 4 5 +1 top
2 2 0 5 3 +1 x̂0 = 0
3 0 1 3 4 +1 x̂1 = 0
4 1 2 4 5 +1 x̂0 + x̂1 = 1

(b)

edge # (i1,i2) :
x̂i∈ edge

0 0 1
1 0 2
2 1 2
3 3 4
4 3 5
5 4 5
6 0 3
7 1 4
8 2 5

(c)

Table B.10: ReferenceTriangularPrism definitions, (a) vertex coordinates, (b) faces,
(c) edges.

leads to the (vector) coefficients

a = 1
2 (+x0 + x3) , (B.10a) a0 =

1
2 (−x0 + x1 − x3 + x4) , (B.10b)

a1 =
1
2 (−x0 + x2 − x3 + x5) , (B.10c) a2 =

1
2 (−x0 + x3) , (B.10d)

a02 =
1
2 (x0 − x1 − x3 + x4) , (B.10e) a12 =

1
2 (x0 − x2 − x3 + x5) . (B.10f)

Also here, the rearrangement to a linear combination of vertex vectors is given:

ξ0 =
1
2 (1 − x̂2)(1 − x̂0 − x̂1) , (B.11a) ξ1 =

1
2 x̂0(1 − x̂2) , (B.11b)

ξ2 =
1
2 x̂1(1 − x̂2) , (B.11c) ξ3 =

1
2 (1 + x̂2)(1 − x̂0 − x̂1) , (B.11d)

ξ4 =
1
2 x̂0(1 + x̂2) , (B.11e) ξ5 =

1
2 x̂1(1 + x̂2) . (B.11f)

Using these definitions, the transformation from reference to physical space is given by

G(x̂) =
5∑

i=0

ξi(x̂) xi . (B.12)

Integration rules

The integration rules that are implemented for the ReferenceTriangularPrism are
listed Table B.11 on the next page.
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class name order # points remark
TriPrism_1_1 1 1 product of Tn2_1_1 and Cn1_1_1
TriPrism_3_1 3 8 product of Tn2_3_1 and Cn1_3_4
TriPrism_5_1 5 21 product of Tn2_5_1 and Cn1_5_9
TriPrism_7_1 7 64 product of T2_7_1 and Cn1_7_x

Table B.11: Integration rules related to ReferenceTriangularPrism.

B.3.4 ReferenceCube

Geometry and topology

ReferenceCube formally is a Cartesian product of ReferenceLines in the same way
as ReferenceSquare. Hence, except for the edge and face definitions, the setup of this
geometry is foreseeable, cf. Table B.12. The enumeration of the vertices is also depicted
in Figure B.1 on the facing page.

i x̂i

0 (−1,−1,−1)
1 (+1,−1,−1)
2 (−1,+1,−1)
3 (+1,+1,−1)
4 (−1,−1,+1)
5 (+1,−1,+1)
6 (−1,+1,+1)
7 (+1,+1,+1)

(a)

face # (i1, . . .) : x̂i ∈ S sign remark
0 0 1 2 3 −1 x̂2 = −1
1 0 1 4 5 +1 x̂1 = −1
2 0 2 4 6 −1 x̂0 = −1
3 1 3 5 7 +1 x̂0 = +1
4 2 3 6 7 −1 x̂1 = +1
5 4 5 6 7 +1 x̂2 = +1

(b)

edge # (i1,i2) :
x̂i∈ edge

0 0 1
1 2 3
2 4 5
3 6 7
4 0 2
5 1 3
6 4 6
7 5 7
8 0 4
9 1 5
10 2 6
11 3 7

(c)

Table B.12: ReferenceCube definitions, (a) vertex coordinates, (b) faces, (c) edges.

Mapping

For the mapping from the ReferenceCube to an arbitrary hexahedral with the ver-
tices xi, i = 0, . . . , 7, the ansatz is

G(x̂) = a + x̂0 a0 + x̂1 a1 + x̂2 a2 + x̂0 x̂1 a01 + x̂0 x̂2a02 + x̂1 x̂2 a12 + x̂0 x̂1 x̂2 a012 . (B.13)
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B.3 Three-dimensional reference geometries

Figure B.1: Vertex enumeration defined in
ReferenceCube. x̂0 x̂1

x̂2 x̂3

x̂4 x̂5

x̂6 x̂7

x̂0

x̂1

x̂2

The involved vectors are

a = 1
8 (+x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7) , (B.14a)

a0 =
1
8 (−x0 + x1 − x2 + x3 − x4 + x5 − x6 + x7) , (B.14b)

a1 =
1
8 (−x0 − x1 + x2 + x3 − x4 − x5 + x6 + x7) , (B.14c)

a2 =
1
8 (−x0 − x1 − x2 − x3 + x4 + x5 + x6 + x7) , (B.14d)

a01 =
1
8 (+x0 − x1 − x2 + x3 + x4 − x5 − x6 + x7) , (B.14e)

a02 =
1
8 (+x0 − x1 + x2 − x3 − x4 + x5 − x6 + x7) , (B.14f)

a12 =
1
8 (+x0 + x1 − x2 − x3 − x4 − x5 + x6 + x7) , (B.14g)

a012 =
1
8 (−x0 + x1 + x2 − x3 + x4 − x5 − x6 + x7) . (B.14h)

However, owing to the symmetry of the reference cube, the mapping is also easily con-
structed in nodal form: the functions

ξ0 =
1
8 (1 − x̂0)(1 − x̂1)(1 − x̂2) , (B.15a) ξ1 =

1
8 (1 + x̂0)(1 − x̂1)(1 − x̂2) , (B.15b)

ξ2 =
1
8 (1 − x̂0)(1 + x̂1)(1 − x̂2) , (B.15c) ξ3 =

1
8 (1 + x̂0)(1 + x̂1)(1 − x̂2) , (B.15d)

ξ4 =
1
8 (1 − x̂0)(1 − x̂1)(1 + x̂2) , (B.15e) ξ5 =

1
8 (1 + x̂0)(1 − x̂1)(1 + x̂2) , (B.15f)

ξ6 =
1
8 (1 − x̂0)(1 + x̂1)(1 + x̂2) , (B.15g) ξ7 =

1
8 (1 + x̂0)(1 + x̂1)(1 + x̂2) , (B.15h)

enter the mapping as

G(x̂) =
7∑

i=0

ξi xi . (B.16)
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Integration rules

The integration rules that are implemented for the ReferenceCube are listed in Table B.13.

class name order # points remark
Cn3_1_1 1 1 centroid formula, p. 229
Cn3_3_4 3 8 product Gauß formula, p. 230
Cn3_5_9 5 27 product Gauß formula, p. 234
C3_7_2 7 34 p. 265

Table B.13: Integration rules related to ReferenceCube.
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Summary

This thesis presents numerical methods and tools for the simulation of the flow of fluids with
different thermodynamical properties. Against the background of gas-liquid multiphase
flow, which is frequently simulated by simplistically assuming both components to be
incompressible, the presentation runs along the lines of three problems that have to be
solved to improve the description and simulation tools for multiphase flow.

First, a mathematical model is sought that allows the numerical solution for both
compressible and incompressible fluids. When considering the Navier–Stokes equations
in terms of conservation variables, the incompressible limit is singular. By solving for
certain generalized variable sets rather than conservation variables, the singularity can be
avoided. Such variable sets with a well-defined incompressible limit are pressure primitive
variables and entropy variables. The different sets are introduced and the advantages and
disadvantages of numerical methods based on them are summarized. Especially entropy
variables, which stem from symmetrization theory, give rise to desirable properties like
automatic fulfillment of the second law of thermodynamics.

To test the generalized variable formulation, a time discontinuous Galerkin least-squares
finite element discretization of the Navier–Stokes equations is presented. An essential
component to ensure stability of the method is the least-squares operator. A recently de-
vised stabilization matrix applicable to compressible and incompressible flow is evaluated.
With this ingredient, the discretization is suitable to simulate the flow of fluids with widely
differing thermodynamic behavior. However, the second central question asks for more ge-
ometric flexibility than the least-squares method with spatially continuous basis functions
can offer. This is the reason to focus efforts on developing a space-time discontinuous
Galerkin finite element method. This kind of discretization allows local adaptation and
leads to minimal inter-element coupling, which is beneficial for computational purposes.
A method previously applied to compressible flow with an ideal gas equation of state
is extended with the entropy variable formulation for use with general fluids. Particular
attention is paid to the examination which components of the numerical method have to be
changed or adapted when using different thermodynamical models. Different possibilities
of solving the nonlinear algebraic system by pseudo-time integration are investigated. The
discretization of the Euler equations is augmented by the viscous terms of the Navier–
Stokes equations using the interior penalty method. Numerical results for a diverse range
of compressible and incompressible test cases underline the applicability of the method for
various fluids and conditions.
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Summary

The numerical methods discussed in this dissertation lead to complex solution algo-
rithms that have to be implemented as software to be applied in practice. The third central
topic and an important part of the current project is the development of hpGEM, a general-
purpose discontinuous Galerkin finite element software framework. hpGEM provides
implementations of common data structures and functionality necessary to translate discon-
tinuous Galerkin discretizations for a wide range of partial differential equation problems
into computer programs. It facilitates and accelerates the implementation of finite element
methods, the assessment of algorithms, and their application. This dissertation presents the
status of the framework, exemplifies aspects of its philosophy and design, and discusses
several examples of how the components can be applied.

The combination of the formulation in terms of general sets of variables, a mathematical
method that accommodates geometric flexibility and adaptivity, and a software environment
for the implementation of numerical methods advances several steps towards the application
of finite element methods to gas-liquid multiphase flows.
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Samenvatting

Dit proefschrift behandelt numerieke methoden voor de simulatie van de stroming van gas-
sen en vloeistoffen met uiteenlopende thermodynamische eigenschappen. De ontwikkelde
technieken zijn bedoeld voor een betere beschrijving van gas-vloeistof-meerfasenstromin-
gen. Deze worden tot dusver meestal als incompressibel beschouwd, terwijl dit voor de
gas fractie vaak een grove vereenvoudiging is. Drie onderwerpen staan centraal in het
verrichtte onderzoek en de presentatie van de resultaten.

Ten eerste wordt een wiskundig model gezocht dat voor zowel compressibele als incom-
pressibele vloeistoffen een correct gedefinieerd probleem oplevert. Het gebruik van de
standaard conservatieve grootheden bij het oplossen van de Navier–Stokes vergelijkingen
leidt echter tot een singuliere incompressibele limiet. Daarentegen kan men door gebruik
te maken van andere variabelen deze singulariteit vermijden. Variabelen met een correct
gedefinieerde incompressibele limiet zijn de zogenaamde primitieve variabelen en de entro-
pievariabelen. De verschillende variabelen worden geïntroduceerd en een overzicht van de
voor- en nadelen van daarop gebaseerde numerieke methoden wordt gegeven. Met name de
entropievariabelen, die uit de symmetriseringstheorie voortkomen, bieden aantrekkelijke
eigenschappen, bijvoorbeeld het automatisch voldoen aan de tweede wet van de thermody-
namica. Om de formulering met generieke variabelen te testen wordt een tijdsdiscontinue
Galerkin kleinste-kwadraten eindige elementen discretisatie gebruikt. Cruciaal voor de
stabiliteit van deze methode is de kleinste-kwadraten operator. Een recentelijk voorgestelde
stabilisatiematrix die zowel voor compressibele als incompressibele stromingsproblemen
geschikt is wordt geëvalueerd. Met deze operator is de methode in staat om vloeistoffen
met verschillend thermodynamisch gedrag te simuleren.

Terwijl de ruimtelijk continue Galerkin methode de simulatie van zowel compressibele
als incompressibele media mogelijk maakt laat hij wat de geometrische flexibiliteit van de
discretisatie betreft te wensen over. Op dit gebied heeft de methode enkele tekortkomingen
aangezien de ruimtelijke basisfuncties continu moeten zijn. Daarom wordt in het tweede
deel een ruimte-tijdsdiscontinue Galerkin methode toegepast. Dit soort discretisatie is
goed te combineren met lokale roosterverfijning en levert minimale koppeling tussen
de vrijheidsgraden van verschillende elementen op. Dit is vooral voor de behandeling
op parallele computersystemen voordelig. Een methode die eerder voor niet-viskeuze
compressibele stromingsproblemen met een ideaal gas toestandsvergelijking gebruikt werd,
wordt uitgebreid met de entropievariabelen formulering zodat ook andere vloeistoffen
gesimuleerd kunnen worden. Hierbij wordt bijzondere aandacht besteed aan het handhaven
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van het generieke karakter van de methode door zo weinig mogelijk aanpassingen aan
verschillende typen vloeistoffen toe te laten. Verder worden verschillende manieren
onderzocht om het niet-lineaire algebraïsche systeem van vergelijkingen met behulp van
pseudo-tijd integratie op te lossen. De discretisatie van de Euler vergelijkingen wordt ook
uitgebreid met de viskeuze termen van de Navier–Stokes vergelijkingen. Hiervoor wordt
een methode met een interne strafterm gebruikt. Numerieke voorbeelden voor een aantal
testgevallen met verschillende compressibele en incompressibele vloeistoffen benadrukken
de veelzijdige toepasbaarheid van het resulterende schema.

De numerieke methoden welke in dit proefschrift behandeld worden leveren com-
plexe algoritmes op, die als computerprogramma’s geïmplementeerd moeten worden om
praktische problemen op te lossen. Het derde centrale thema van dit proefschrift is de
ontwikkeling van hpGEM, een generiek platform voor de implementatie van discontinue
Galerkin methoden. hpGEM stelt een aantal datastructuren en procedures beschikbaar,
die voor de implementatie van discontinue Galerkin discretisaties voor veel verschillende
typen partiële differentiaalvergelijkingen nodig zijn. Daardoor wordt de implementatiestap
vereenvoudigd en versneld. De status van de ontwikkeling van hpGEM wordt gedocumen-
teerd en belangrijke aspecten van de onderliggende ideeën en het software design uiteen
gezet. Ook voorbeelden van de toepassing van diverse componenten worden gegeven.

De combinatie van de formulering met gegeneraliseerde variabelen, een wiskundige
methode die geometrisch flexibel is, alsmede lokale verfijning ondersteunt en een software
omgeving voor de implementatie van numerieke methoden zijn belangrijke onderdelen
in de constructie van een eindige elementen methode die toe te passen is op gas-vloeistof
meerfasenstromingen.
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Zusammenfassung

In dieser Dissertation werden numerische Methoden für die Strömungssimulation von
Fluiden mit unterschiedlichen thermodynamischen Eigenschaften entwickelt. Vor dem
Hintergrund von Mehrphasenströmungen mit Gas- und Flüssigkeitsphase, die häufig
vereinfachend beide als inkompressibel betrachtet werden, werden drei Hauptthemen
behandelt, die auf eine Verbesserung der Beschreibung von und Simulationstechniken für
solche Strömungen abzielen.

Zunächst wird ein mathematisches Modell gesucht, das es erlaubt, numerische Methoden
zu entwerfen, die sowohl für kompressible als auch inkompressible Fluide wohldefinierte
Formulierungen ergeben. Betrachtet man die Navier-Stokes-Gleichungen in Abhängig-
keit von den zu ihrer Herleitung benutzten Erhaltungsgrößen, so ist der inkompressible
Grenzfall singulär. Gebraucht man stattdessen andere Variablensätze, dann kann diese
Singularität vermieden werden. Variablen mit wohldefiniertem inkompressiblem Limit
sind die sogenannten primitiven Variablen und die Entropievariablen. Diese Variablen-
gruppen werden zunächst eingeführt und die Vor- und Nachteile auf ihnen basierender
numerischer Methoden zusammengefasst. Insbesondere die Entropievariablen, die aus der
mathematischen Symmetrisierungstheorie resultieren, bieten interessante Eigenschaften
wie z.B. die automatische Erfüllung des zweiten Hauptsatzes der Thermodynamik.

Der Gebrauch der generalisierten Variablensätze wird anhand einer Galerkin-Kleinste-
Quadrate-Diskretisierung der Navier-Stokes-Gleichungen demonstriert. Essentiell für die
Stabilität dieser Methode ist der Kleinste-Quadrate-Operator. Eine kürzlich vorgestellte
Stabilisierungsmatrix, die sowohl für kompressible als auch inkompressible Medien an-
wendbar ist, wird getestet. Dank dieses Bestandteils ist die Diskretisierung geeignet, um
Strömungsprobleme für thermodynamisch unterschiedliche Medien zu simulieren, womit
das erste Ziel dieser Arbeit erreicht ist.

Des Weiteren wird jedoch von der numerischen Methode geometrische Flexibilität
gefordert, die für die Behandlung von Problemen mit verschiedenen Skalen und frei-
en Oberflächen benötigt wird. In dieser Hinsicht hat die zunächst betrachtete Galerkin-
Methode mit räumlich kontinuierlichen Basisfunktionen wesentliche Einschränkungen.
Daher wird im Weiteren eine (Raum- und Zeit-) diskontinuierliche Galerkin (DG) Finite-
Elemente-Methode entwickelt. Dieser Diskretisierungstyp erlaubt eine große Klasse lo-
kaler Verfeinerungen und führt überdies zur minimalen Kopplung der Freiheitsgrade von
verschiedenen Elementen, was vor allem der Behandlung auf Parallelrechnersystemen ent-
gegenkommt. Eine DG Methode zur Behandlung nichtviskoser Strömungen idealer Gase
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wird um die Entropievariablenformulierung erweitert, so dass verschiedenartige Fluide
und Strömungsgegebenheiten behandelt werden können. Besondere Aufmerksamkeit gilt
hierbei der weitgehenden Vermeidung von Veränderungen, um die numerische Methode an
verschiedene thermodynamische Modelle anzupassen. Das Lösen des nichtlinearen alge-
braischen Gleichungssystems geschieht mittels Pseudo-Zeit-Integration. Unterschiedliche
Anwendungsmöglichkeiten dieses Verfahrens im Zusammenhang mit dem Gebrauch von
generalisierten Variablen werden betrachtet. Außerdem werden der Diskretisierung der
Euler-Gleichungen die viskosen Terme der Navier-Stokes-Gleichungen unter Benutzung
einer Strafterm-Methode hinzugefügt. Simulationsergebnisse für eine Vielzahl von Testfäl-
len, die sowohl Gase als auch Flüssigkeiten betreffen, unterstreichen die Anwendbarkeit
der Methode für große Klassen von Fluiden und physikalischen Bedingungen.

Die numerischen Methoden, die im Rahmen dieser Dissertation entwickelt wurden,
führen zu komplexen Lösungsalgorithmen, die als Computerprogramme implementiert
werden müssen, um auf praktische Probleme anwendbar zu sein. Der dritte Teil der Arbeit
widmet sich diesem Arbeitsschritt mit besonderer Berücksichtigung der Vereinfachung
und Beschleunigung des Implementierungsprozesses. Dazu wird die Entwicklung von hp-
GEM, einem universell anwendbaren Softwaresystem für DG Finite-Elemente-Methoden,
beschrieben. hpGEM stellt Implementierungen von typischerweise benötigten Datenstruk-
turen und Funktionalitäten bereit, die es erlauben, DG Diskretisierungen für eine Vielzahl
von partiellen Differentialgleichungsproblemen in verständlicher Weise als Computer-
programm umzusetzen. Der Entwicklungsstatus von hpGEM wird im Rahmen dieser
Arbeit dokumentiert, Beispiele für die zugrunde liegenden Ansätze und Entwurfstechniken
werden angeführt und die Anwendung der Komponenten demonstriert.

Die in dieser Arbeit vorgestellte Kombination der Formulierung mittels verallgemei-
nerter Variablen, einer Diskretisierung, die hohe Ansprüche hinsichtlich geometrischer
Flexibilität und Adaptivität erfüllt und einer Softwareumgebung zur einfachen Implemen-
tierung der entwickelten Methoden zeigt einen vielversprechenden Weg zur Anwendung
von Finite-Elemente-Methoden auf Mehrphasenströmungsprobleme auf.

170



Acknowledgements

This thesis is the result of a four-years research project and could not have been completed
without the help and encouragement of numerous people, to whom I would like to pay
tribute here.

For the past four years I have worked in the Numerical Analysis and Computational
Mechanics group of Jaap van der Vegt. Jaap, you have given me the chance to work on a
current topic in a (for me) new field of science. To be offered this opportunity, together
with the freedom you gave me, provided a lot of motivation. Your guidance and support
have influenced my professional and personal development and with your never-failing
enthusiasm and optimism you have contributed vastly to both this dissertation and the
hpGEM project.

A part of this thesis derives from joint work with Monika Polner. Monika, thank you for
the pleasant collaboration and support. For the discontinuous Galerkin discretization and
pseudo-time methods, Chris Klaij has been an experienced contact person. Chris, thanks
for sharing your knowledge and insights.

I would like to thank the members and users of the hpGEM project: Alexander, Davit,
Domokos, Henk, Pablo, Sander, and Vijaya. I learned a lot from our discussions about
various mathematical and computer scientific problems. On several occasions, Onno
Bokhove’s ability to push the project ahead has been invaluable. Onno, thank you for
challenging me in both science and sports.

I acknowledge the financial support from STW and the co-funding companies and
thank the members of the user committee of the two-phase flow project for their feedback
during the regular meetings. Special thanks go to my fellow PhD students Hanneke and
Dongsheng from the cooperating groups Physics of Fluids and Fundamentals of Chemical
Reaction Engineering at the University of Twente. Niels, thanks for keeping track of the
administrative matters of the project.

Next, I would like to acknowledge my present and former office-mates: Janivita, Joris,
Milan, Satyendra, Tim, and Yan. Thank you for all the scientific, semi-scientific, and
non-scientific conversations we have had, for the pleasant office hours, and for tolerating a
colleague who keeps half a cupboard’s contents of sports clothes around his desk.

Further on, I appreciate the friendly atmosphere in the Mathematical Physics and
Computational Mechanics group, considerably contributed to by Mariëlle and Diana,
whom I also thank for their help with many administrative duties.

171



Acknowledgements

Also, I would like to express my sincere gratitude to the members of my graduation
committee for their time to read and evaluate my thesis: dr. ir. O. Bokhove, prof. dr.
H. J. H. Clercx, prof. dr. ir. H. W. M. Hoeijmakers, Prof. Dr. G. Kanschat, prof. dr. ir.
J. A. M. Kuipers, prof. dr. R. M. M. Mattheij, and prof. dr. ir. J. J. W. van der Vegt. Your
comments have helped to improve this dissertation.

Luckily there have been enough people to once in a while remind me that there are other
things besides mathematics. Thanks go to the friends I have made here and in particular to
Ming and Natanael. Of my former fellow students especially Katrin, Rene, and Su-Jung
deserve mentioning; I appreciate that distances have not affected our friendship. Sven
and Sabine, thanks for sharing both good and difficult times in our PhD phase and for
countless other things. Sven, without your reading of the complete manuscript this thesis
would contain a lot more flaws. Thank you so much! Liisa, thank you for your continued
friendship.

Last but not least I would like to thank my parents and my sister Antje for their support
and encouragement.

172



Index

adiabatic coefficient, 23, 31
arbitrary Lagrangian/Eulerian (ALE) for-

mulation, 47

boundary face, see face, 43
budget operator, 13
bulk viscosity, see viscosity

C++, 110
chemical potential, 20
conservation laws, 12–15
conservation variables, 28
constitutive equations, 15
continuity equation, 14, 17
covolume EOS, 23
critical point, 24

density, 12
design pattern, 109
dilatational viscosity, see viscosity
dimensional analysis, 30
discontinuous Galerkin method, 6, 65–

103
dynamic viscosity, see viscosity

Eckert number, 31
element Reynolds number, 58, 85
enthalpy, 20
entropy, 20
entropy variables, 5, 28
equation of state, 22
EXI method, 84
extensive quantity, 12
EXV method, 84

face, 42
first coefficient of viscosity, see viscosity
first law of thermodynamics, 19
fundamental quantities, 30
future time face, 43

gas constant, 22

hanging node, 6
hanging nodes, 64
heat flux density, 17
hp-refinement, 65
hpGEM, 8, 105–132

ideal gas, 22
incompressible, 21
incompressible fluid, 25
intensive quantity, 12
interior penalty method, 76
internal face, see face, 43
isobaric expansion coefficient, 21
isothermal compressibility, 21

kinematic viscosity, see viscosity
kinetic energy, 14

least-squares
operator, 45, 57
term, 45, 52

linear momentum, see momentum
linear stability domain, 83

mass density, 12
material volume, 12

173



INDEX

Melson correction, 83
mesh, 6
momentum, 14
multiphase flow, 1

Navier–Stokes equations, 4, 17
Newtonian fluids, 16
numerical flux, 73
numerical flux function, 69

object-oriented
design, 108
programming, 108

p-adaptation, 65
past time face, 43
Prandtl number, 31
pressure, 12
pressure incompressible, 21
pressure tensor, 15
primary quantities, 30
primitive variables

with density, 28
with pressure, 28

prognostic equations, 19
pseudo-time integration, 66, 81

quasi-linear form, 27

rate of deformation tensor, 15
rate of strain tensor, 15
reference element, 40
reference time interval, 42
Reynolds number, 31
Runge–Kutta method, 82

second coefficient of viscosity, see vis-
cosity

shear viscosity, see viscosity
space-time domain, 39
space-time slab, 40
specific enthalpy, see enthalpy

specific heat at constant pressure, 20
specific heat at constant volume, 20
specific volume, 12
Stokes hypothesis, 17
stress, 14
stress tensor, 15
surface force, 14

temperature, 12
temperature incompressible, 21
thermal conductivity, 17
thermodynamic pressure, see pressure
time face, see face, 43
total energy, 14
trace, 43

units, 30
unstructured mesh, 6, 115

van der Waals EOS, 23
viscosity

bulk, 16
dilatational, 16
dynamic, 16
first coefficient of, 16
kinematic, 26
second coefficient of, 16
shear, 16

viscous stress tensor, 15
isotropic/anisotropic part, 16

174


